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Abstract—Noise introduced to DNA sequences from techno-
logical sequencing error is a significant problem in the field
of microbiome research. Some techniques already exist for
sequence denoising, but they don’t scale well. We investigate the
potential for neural networks to convert noisy DNA sequences
to their denoised counterparts and present the results of two
architectures: a convolutional neural network (CNN) and a long-
short-term memory cell (LSTM) network. Shallow versions of
both network types effectively reduced the noise by more than a
factor of 3 after only a few epochs of training.

I. INTRODUCTION

ECENT scientific discoveries suggest that the human gut

microbiome has a significant effect on human health,
even beyond the gastrointestinal tract [1]. The gut microbiome
may be implicated in obesity, diabetes, allergies, anxiety,
depression, schizophrenia, autism and more [2]. A whole new
frontier of medicine thus depends upon our ability to reliably
sequence and analyze the gut microbiome. However, high-
throughput DNA sequence data is error-prone, and the DNA
sequences of bacterial species in the gut sometimes differ by
as little as one nucleotide in the analyzed region. Therefore it
is hard to distinguish between noise introduced by sequencing
error and natural variation due to evolution.

Current denoising protocols are predominantly alignment-
based, and thus struggle to resolve nucleotide differences
without clear reference sequences, of which there are an
insufficient number. We propose a neural network approach
to resolve noisy microbiome DNA sequences without reliance
on reference sequences. The assumption that we are making
(which experts in the field support) is that certain types of
nucleotide variation are more characteristic of sequencing
error, while others are more characteristic of evolution. For
example, G to A substitution is known as a common error
made by sequencing methods [3] and certain patterns such
as CGGT increase the likelihood of sequencing errors as well
[4].

To observe the abundance of bacterial species in the human
gut, scientists sequence the 16S rRNA gene, which evolves
at an estimated rate of 1% per 50 million years and can
function as a taxonomic tag [5]. A few nucleotide differ-
ences between 16S sequences can signify thousands of years
of evolutionary change, making it imperative to deconvolve
evolutionary variation from sequencing errors. We aim to build
a neural network capable of distinguishing between biological
and technological sequence variation, finding the most likely

original DNA sequences from which a set of noisy sequences
were derived.

II. RELATED WORK

In the past, there have been a few algorithms proposed
to solve the denoising problem. An older technique like
image stacking was used for removal of white noise [6].
Bioinformatics developers have also developed “consensus”
methods [7], which use pairwise alignment for insertion and
deletion handling. Due to the poor scaling of such algorithms
we choose to apply deep learning to generate non-noisy
sequences. When choosing a network architecture, we treat
this problem like image denoising on one hand, which uses
deep CNNs [8] and like other sequential data on the other
hand, that leverages Recurrent Networks (RNN’s).

III. DATASET OVERVIEW

We are using data specifically created for benchmarking
methods to improve microbial profiling. A community of
57 bacteria of about equal abundances, is sequenced twice,
once to the standard 20X coverage and once to a financially
unsustainable but more accurate 500X coverage. Coverage
means each segment of DNA is sequenced on average 20 or
500 times and can act as a proxy for confidence in nucleotide
calls. This provides us with data for a supervised learning
problem where in input is a sequence from the 20X batch and
the output should be it’s corresponding 500X sequence. Data
came from the European Nucleotide Archive [9].

The column scheme is organized as follows: query identi-
fier, bacterium species, raw noisy sequence (input), denoised
sequence (output), e-value. The lower the e-value, the closer
the association between the noisy and the denoised sequence.
These data consist of approximately 500,000 sequences, out of
which approximately 12% have at least one error. The noisy
and denoised sequences have been aligned such that insertions
and deletions in the noisy sequence do not create off-by-one
errors for the remainder of the sequence. In order to align
them, a “-”” has been inserted in either the noisy or the denoised
sequence. An example noisy sequence is shown in Figure 1.

A. Data Preparation

The objective of sequence to sequence learning can be
accomplished efficiently by character level modeling of the
input data [10]. The nucleotides are not believed to have



TABLE: Example Dataset Sequence

Noisy| Reference e-value

Seq I} Taxa ID

Noisy Sequence Reference Sequence

ERR777] Desulfovibrio_pigel ACGGAGGGTGC AGCGTTAATCGGAATCACTG | ACGGAGGGTGC ' AGCGTTAATCGGAATCACTGGGCG| 5.64e-103
695.8 | r_ATCC_29098 GGCGTAAAGCGCACGTAGGCTG T GTAAGT | TAAAGCGCACGTAGGCTG T~ GTAAGTCAGGGGTG
CAGGGGTGAAAGCCCT CGGCTCAACCG. GGAA | AAAGCCC CGGCTCAACCGT GGAA  TGCCC TTGATA
TGCCTTTGATACTGC CGA(CT/AGAGTCCGGG| CTGC/ CGA-CTCGA TCCGGGAGAGGGT: G GGAAT
AGAGGGT/GTGGAATTCCAGGTGTAGGAGTGA | TCCAGGTGTAGGAGTGAAATCCGTAGAT ATCTGGAG
AATCCGTAGACATCTGGAGGAACATCAGTGGC | GAACATCAGTGGCGAAGGCG! CCACCTGGACCGGTA
GAAGGCG/CTACCTGGACCGGTACTGACGCTG
AGGTGCGAAAGCGTGGGGAGCAAACAG

TGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAG

Figure 1: Noisy and Exact Sequence example
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Figure 2: One-hot representation for DNA data

a hidden feature breakdown (which helps a great deal in
embeddings like GloVe, Word2Vec). Thus a one-hot encoding
representation of the input data makes most sense. The input
to the models discussed in the following sections is a 5-
dimensional one-hot vector of classes A, C, G, T, and - (see
Figure 2).

IV. METHODOLOGY

As mentioned in the previous section, we treat our problem
as the supervised learning of an output sequence from an
input sequence. This constricted our model space search in
the domain of sequence prediction. We therefore, propose two
very different model architectures: a Convolutional model and
a Recurrent model.

Both models are trained on a higher ratio of noisy samples
than is naturally occurring in order to speed up training and
steer the network away from predicting the input as output.
Specifically, the training set contains 112,089 sequences, of
which 55,906 are noisy (contain at least one incorrect nu-
cleotide). The dev set contains 12,269 sequences of which
1,450 are noisy and the test set contains 12,107 sequences
and 1,507 are noisy. Both networks are trained and tested on
the exact same train/val/test sequences in order to maintain a
fair comparison (see Figure 3 for distribution representation).

A. Convolutional Neural Network Model

The first architecture is a convolutional neural network
(CNN) that treats the data like a noisy image, using the
nucleotides on both sides of an error [11] to recognize and
correct them (See Fig 4).

The current network is five layers deep and includes regu-
larization at each layer. We use ReLU [20] except in the final
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Figure 3: Data distribution
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Figure 4: Conv Net model architecture

Table I: CNN Model Architecture

Attributes Details
Number of layers 5
Activation ReLU, (exc. softmax final layer)
Dropout 4% Tayer dropout p=0.3
Convolution 2D “same” padding
Kernel type Non-square
Optimizer Adam
Loss Mean squared error
Metric of success Accuracy

layer, which uses softmax activation to force the entries of each
one-hot vector to sum to 1. Kernel sizes are not square, which
allows the network to rely on a greater number of nucleotides
before and after the noise. For example, a kernel size of (5x7)
was experimentally found to perform much better than a kernel
size of (5 x 5) for the first layer. The network was trained for
12 epochs, though we speculate it might improve slightly with
more training time.

B. Recurrent Neural Net model: LSTM

Whereas the convolutional model mimics image denoising,
we hypothesized that an architecture modeling DNA sequences
as a time series, such as those used in machine translation of
language, may perform better.

We therefore develop several LSTM-based models [12] that
encode and use the previous nucleotides in the sequence to
predict the next nucleotide. In this model, we treat DNA as
a natural language with vocabulary of five words: Adenine,
Cytosine, Guanine, Thymine, and “-” for nucleotide deletion.

For each of our three architecture experiments, we use
about 7,000 training examples, and decide based on the keras
evaluation metric (Y’: predicted one-hot vectors, Y*= true
labels):

_ Y -v*
 onehot_size x numSeqs * maz_seqlength
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Figure 5: LSTM encoder-decoder architecture

whether to tune that architecture’s hyperparameters. We then
train the chosen architecture with chosen hyperparameters on
the whole train set and present more intuitive evaluation on
test set performance. The model descriptions are below:

1) Single layer Encoder-Decoder LSTM model: Inspired
by the autoencoder model [13], we create a four hidden layer
LSTM architecture following the encoder-decoder architecture
(see Figure 5) where the information is passed via a thought
vector.

Table II: Encoder decoder LSTM Model architecture

Attributes Details
Number of layers 1
Latent dimension 100
Optimizer Adam
Loss Categorical cross-entropy
Prediction Decoder Inference greedy sampling
Metric of success Accuracy

The details of the LSTM model are provided in Table II. We
use “Adam” to optimize the “categorical cross-entropy” loss
between the network output one-hot encoded sequences and
the expected denoised sequences. Because of our design choice
of relatively few hidden layers with limited latent dimensions,
the model requires very few(10s) of epochs to train. From our
observation, the training model stagnates at training and
validation accuracy. For experimentation purpose, we trained
it on noisy examples only. Validation and training accuracy
were very close to one another.

2) Neural Machine Translation model: Neural machine
translation (NMT) has proven to be quite successful in a
sequence to sequence translation and prediction. Recent ad-
vancements in NMT like Beam search decoding and Attention
based models [14] have been great in correctly predicting the
“next” word in the sequence.

We utilized some of the expertise of the NMT model
and developed an architecture with character level tensorflow
embedding. The dataset is preprocessed to be given input as a
space separated sequence of A,C,G.T,- (Adenine, Cytosine,
Guanine, Thymine, and no nucleotide respectively) forwarded
to both the source and target predictions [15] (refer Fig 6).
The design has a single embedding layer, two LSTM hidden
layers and an output projection layer. For the purpose of
experimentation, we trained the model on around 50,000 input
sequences split into train/dev/test set as . The model
is trained for “Softmax Cross Entropy” loss with “Adam”
optimizer. As the model is trying to learn the input sequences
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Figure 6: NMT architecture
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Figure 7: Many-to-many LSTM architecture

of variable length, we expect the predictions of NMT to be
of variable length. We were able to achieve a Bleu score
[17] around , which suggests an area of improvement for
future.

3) Many-to-many multi-layered LSTM Architecture: Af-
ter observing the performance of the previous architectures,
we thought to combine the best elements of our architectures
so far, namely the CNN’s ability to condense information from
the entire sequence and the machine translation LSTM model’s
ability to more heavily weight local environment information.
We created a many-to-many [16] model architecture with
two bidirectional LSTM layers of hidden dimension 100 and
a Dropout layer (p=0.5) between them for regularization (see
Figure 7). Ultimately LSTM output is put through a TimeDis-
tributed Dense layer with softmax activation to obtain a prob-
ability of each A-T-C-G nucleotide. The predicted sequence
in the maximum probability nucleotide at each position. This
is the model for which we provide final results because it
outperformed the others.



V. EXPERIMENTS AND RESULTS

Both the convolutional network and the recurrent network
are able to learn to output the correct nucleotide rather than
the input noisy one most of the time, often with very high
confidence. See Figure 8 for an example of such an output.

Red: Should have stayed the same but didnt (bad)[87 98]
Green: Should have changed and did (good)[7@ 76 82 86]
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Blue: Should have changed but didnt (ok)[74 95]
T ATCGAAAACTGCCGGTCGGAAGGAACACCTGTGGCGAAAGCGG
I ATCGAAAACTGCCGGTCTGGAGGAATACCGGTGGCGAAGGCGEG
P ATCGAAAACTGCCGGTCCGAAGGAACACCTATGGCGAAGGCAG

Figure 8: Segment of text output color-coded by output type. T
= Target sequence, I = Input sequence, P = Predicted sequence

After selecting our top performing models based on vali-
dation set accuracy, we test our models on the test data and

report performance on a few metrics:
« Accuracy per sequence:

#correct_nucleotides

APS =

#sequences

(indicates number of correct nucleotides expected in
a sequence). Vast majority of sequences are 251 £ 3

nucleotides
o Accuracy per base:

APB =

(probability of a given nucleotide being correct)

« Total set accuracy:

F#correct_nucleotides

total#nucleotides

#completely_correct_sequences

TSA=

A. Convolutional Model

total_#of_sequences

o Train curves We observe a plateaued behavior of av-
erage nucleotides changed per sequence as the training
progresses. Figure 9 displays the pattern of both the
mistakes introduced and mistakes corrected as the model
trains, which corroborates the desired behavior of substi-

tuting/inserting nucleotides.

o Accuracy of predictions
The current convolutional model has surpassed | 96.5%
accuracy on the test set, when measuring accuracy as

total set accuracy. As a point of reference, ac

curacy of
the input test sequences (total set accuracy) was | 87.6% |,
so we have eliminated about 72% of the noisy sequences

completely.
o Prediction patterns in the model

We visualize the results both as an overall accuracy
and by separating out the different types of nucleotide
errors (Fig 10). In these charts, ”"Baseline Predictions”
illustrates the frequency of changes that a perfect net-
work would make, and the other three charts show
the frequency of changes that this network made. The
convolutional network learns to correct the two most
common errors (T to C and G to A) very well, but
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Figure 9: CNN: correct and incorrect nucleotide changes

often fails to change C to T and A to G, which are also
common mistakes. Furthermore, we see that on average it
is changing about 0.602 nucleotides per sequence, with on
average 0.595 of those being correct changes and 0.007
of those being bad changes (introduction of new noise to
previously correct sequences). Because the good changes
are two orders of magnitude greater than the bad, the data

set overall becomes much less noisy.
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Figure 10: Convolutional Network performance- Frequency of
switching from y-axis nucleotide to x-axis.

B. Recurrent Model: Many-to-many bidirectional LSTM

o Train curves We see probability of predicting a correct
nucleotide base increase as the recurrent model trains

(see Figure

11). The validation set contains a much



higher proportion of naturally non-noisy sequences (input
matches output to begin with) than does the train set, and
for this reason the validation accuracy starts and remains
much higher.
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Figure 11: Training curves uses “accuracy per base”. By 20
epochs, the improvement to training accuracy plateaus

o Accuracy of predictions

The current recurrent model surpassed total set
accuracy on the test set. Again, accuracy of the input test
sequences (total set accuracy) was , so we have
eliminated about 92% of the noisy sequences completely.

o Correct base predictions The recurrent model conforms
with the behavior of increase in probability of correct
base prediction (see Figure 11). The validation proba-
bilities offset train probabilities being more close to 1 as
the validation set has way more exact sequences than the
training set (refer Fig 3).

« Patterns in noisy nucleotide calling
We observe that the perfect predictions matrix must
switch very frequently from T to C, and somewhat
frequently from G to A, A to G, and C to T. Other
nucleotide base transfers also occur at lower frequencies.
The distribution of correct changes made by the many-
to-many LSTM model very closely matches the perfect
predictions pattern (Figure 12), which suggests that the
network is appropriately learning to distinguish between
technological and biological noise. The distribution of
transitions that the network fails to recognize is fairly
even- while the network was able to learn the most
common types of noise, the less common patterns are
not detected. The bad predictions distribution closely
matches the good predictions distribution, so the network
is occasionally over-applying the patterns it has learned
as technological noise. This could also be a sign of
mislabeled truth data and should be investigated further.
The network was able to take a dataset starting with 0.73
noisy incorrect nucleotides per sequence and output one
with only .03 incorrect nucleotides per sequence, a 24-
fold improvement. The dataset began with 12.5% of the
sequences containing some noise, and the model was able
to reduce this to .095% of the sequences containing some
noise.

Good predictions

Bad predictions

Fail To Change predictions Perfect predictions

Baseline error per sequence: 0.72883
Prediction error per sequence): ©0.02883

Average good changes per sequence : 0.70604
Average bad changes per sequence: 0.00603
Average failure to change per sequence: ©.0228

Figure 12: Frequency of switching from y-axis nucleotide to
x-axis for sequential model

VI. CONCLUSIONS/FUTURE WORK

We have demonstrated the ability of neural networks to
remove errors from noisy DNA sequences. The CNN gave us
promising results right away, without much hyperparameter
tuning. The LSTM model required much more fine-tuning,
but with the right architecture has started to outperform the
shallow CNN. We hypothesize that the ultimate difference in
performance can be attributed to the LSTM model containing
over 300,000 trainable parameters, while the CNN has just
over 100,000. Both networks decreased the noise in the
synthetic data set by more than a factor of 3, and if combined,
may be able to do better than either individually could.

In the future, we hope to accomplish the following:

o Incorporate whether or not the network correctly distin-
guishes a noisy sequence from a correct one into the loss.

o Tune the depth of each network (number of layers).

o Test on different data sets to see if current weights
transfer at all and if not, whether including them in the
training data increases transferability.

o Combine the two networks to decrease noise even further,
as they seem to have picked up on different types of
errors.

o Move away from a completely supervised learning prob-
lem. Our goal in this project was to assign potentially
noisy sequences to the closest reference sequence avail-
able in the microbial 16S database. However, some of
the nucleotides we currently label as noise may in reality
be currently undocumented biological variation. More ad-
vanced benchmarking techniques will make this method
ground-breaking in microbiology research spheres.
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