Backprop Considered Harmful? The Hybrid-Evolution Strategy
for Supervised Learning Training

Andrew Bartolo
bartolo @stanford.edu

Abstract— Modern supervised learning training typically in-
volves (mini-batch) gradient descent, using backpropagation to
update parameters at each iteration. The backpropagation step
is very computationally intensive, and parallelizing it across dis-
crete worker nodes involves transferring potentially hundreds of
megabytes of parameters for each training iteration. This work
assesses the feasibility of replacing traditional backprop with
evolution strategies, a stochastic optimization technique more
commonly used in reinforcement learning. By using evolution
strategies in lieu of traditional backprop, we might drastically
reduce the amount of data transferred over the network at each
training iteration (thus reducing overall training time).

For a smaller test network (multilayer perceptron on
MNIST[1]), we found that, in standard minibatch GD, the
weights gradients did not change much in magnitude over the
course of training. (They did change in angle from iteration to
iteration.) We then implemented the full Hybrid-ES algorithm,
and performed a hyperparameter search to optimize it. We
also created a model to demonstrate the runtime, memory
usage, and network bandwidth utilization of Hybrid-ES vs.
standard batch GD. Finally, we evaluated Hybrid-ES on a larger
ConvNet, but found that it required more hyperparameter
tuning to achieve acceptable accuracy.

I. INTRODUCTION

Modern supervised learning training typically involves
(mini-batch) gradient descent, using backpropagation to up-
date parameters at each iteration. The backpropagation step
is very computationally intensive, and requires 1.) computing
many partial derivatives across the computation graph, and
2.) caching these partials in memory for subsequent param-
eter updates. Parallelized gradient descent involves worker
nodes computing gradients on each mini-batch, but then each
worker node must synchronize the updated parameters across
the entire cluster. To do this, the weights and biases must be
broadcast across the network, which can involve hundreds of
megabytes transferred.

In this work, we propose a modification of evolution
strategies, a technique from reinforcement learning, for use
in supervised learning. For the first training iteration in a cy-
cle, the full analytical backprop gradient is calculated. Then,
for the rest of the cycle, the gradient is updated stochastically
via a series of k small random perturbations. We evaluate
the cost function on each of these, and choose the best
perturbed gradient as the new gradient going forward. The
primary benefit of this approach is that parallel workers can
deterministically generate the updated gradients using only
two scalars: 1.) the seed for the PRNG used to generate the
best (lowest cost) randomly-perturbed matrix, and 2.) the cost
for this matrix. Each worker node chooses the the lowest-cost
seed broadcast to it to reconstruct the matrix.

II. EXPLORING THE GRADIENT

Before implementing the Hybrid-ES algorithm itself, we
did some exploratory work to see how the gradients behaved
across training iterations.

A. Base Network

Hidden Layer Output

Layer

[10]
(softmax)

[784]

[300]

Fig. 1. The network used to perform most algorithm design exploration.

The base network is a 2-layer MLP with 300 hidden units,
and a 10-class softmax output layer. MNIST uses 28x28
grayscale images, so the input layer is 784 pixels, each
containing a value 0-255 [1]. This network trained over 30
epochs each of 50 iterations, so 1,500 iterations total. L2
regularization was used with A\ = 1074, and a fixed learning
rate of a = 5. Minibatch size was set to 1000. Experiments
were performed using 50,000 training set examples, and
10,000 dev set examples.

B. Gradient behavior: magnitude & angle

Initially, we wanted to see how the gradient changed over
the course of training, both in magnitude and direction.



14 4 Avg. training W1 gradient norm difference
- Avg. training W2 gradient norm difference

08

Anorm

06 4

04

021

0.0

T T T T T T T T
0 200 400 600 800 1000 1200 1400
# iterations

Fig. 2. Unmodified network gradient norm divergence.

£ 20
[
©
e
= 1.8
w
2
=]
]
516
E
£
=141
c
o
©
E121
% Training W1 gradient
& 10 — Training W2 gradient
T T T T T T T T
0 200 400 600 800 1000 1200 1400
# iterations
Fig. 3. Unmodified network gradient angle divergence.

From Figure 2, we can see that once training proceeds
past the first few iterations, the gradients change very little
in magnitude. (The initial spike at the beginning is most
likely an artifact due to setting the “previous” gradient to
all-ones for iteration 0.) This lack of change is likely due in
large part to L2 regularization.

Figure 3 was generated by flattening the neurons’ gradients
into a big vector, caching that vector from iteration to
iteration, and computing the cosine similarity between the
vectors at iterations ¢ and ¢ — 1. For comprehensibility, the
angle itself (in radians) is plotted, and not the cosine. We can
see that the gradients do change in direction from iteration
to iteration. We surmise that the periodicity of the graph is
due to cycling over minibatches repeatedly.

Together, these graphs indicate that, for hybrid-ES, 1.)
Whatever random shift we apply to the initial gradient
shouldn’t be too large in magnitude, and 2.) since the gradi-
ents change direction frequently anyway, the randomization
might not be a bad idea. However, there seems to be a
lot of information in the periodicity/pattern of the angle
change, and we unfortunately don’t make heavy use of this
information by just applying a shift sampled from the normal
distribution. In the future, we’d like to try learning this
pattern somehow and using it to inform the shift matrices.

C. Re-using the same gradient

As another exploratory exercise, we asked the following:
What would happen if we fixed the gradient at its epoch-
0 value, and used it to make updates for the entirety of
training? The results from this experiment are shown below.
Note that this gradient was computed across the entire
training set (50 iterations), but only on the first epoch.

07 //—’—

06

05

accuracy

04 ‘,/
03 |
P J —— Avg. training accuracy
V Avg. dev accuracy
02 ; . : ; = n -
0 5 10 15 20 25 30

# epochs

Fig. 4. Fixed-gradient accuracies.

704 —— Avq. training loss
— Avg. dev loss
60
50
2 40 4
8
w
o
20
10
0 1 T T T T T T T
0 5 10 15 20 25 30

# epochs

Fig. 5. Fixed-gradient losses.

We see that, compared to the unmodified reference net-
work, both accuracies suffer a decent amount. However, this
really isn’t too bad, considering that the gradient is only
calculated once. The network is still making forward progress
in training. This is encouraging, as it suggests we can get
away with computing the full gradient less frequently, and
updating it slightly on each iteration.

ITII. HYBRID-ES

Below, we define a standard “off-the-shelf” parallel batch
gradient descent algorithm, and below that, the Hybrid-
ES algorithm. Note that in some cases, notation has been
overloaded, as the transmit, receive, and combine
functions work differently in standard parallel BGD and
Hybrid-ES.

In parallel BGD, we first partition the training set up so
that each node can train over a subset. Then, each node
performs forward prop, backprop, and a tentative update over



Algorithm 1 Parallel Batch GD
1: Split training set T into IV subsets, T;,.
2: for every iteration ¢, each worker node do
3: forward.prop (1y,0)

backprop (T,,0)

Op, =0, —adb,

transmit (60,)
receive (01..n—1,n+t1..N)
0 = combine (61 n)

Ll o A O

Algorithm 2 Parallel Hybrid-ES
1: if iteration 7 % r == 0 then

> Full update

“temp” 0, which we compute the cost function over. The best
such randomly-shifted 6 is chosen for broadcast. However,
here, instead of broadcasting the entire weights and bias
matrices, each node need only broadcast two scalars: 1.) the
random seed to generate the best shift, and 2.) the cost of
the best-shift parameters. From this information, each worker
node can reconstruct the best stochastic update.

IV. EVALUATION

We first assessed an initial “assisted” version of the hybrid
evolution strategy algorithm on the MNIST MLP. This algo-
rithm calculates the full gradient at the start of each iteration,

2: forward.prop (7.,0) and then perturbs it slightly K times. This incarnation of
3: backprop (T, 6) the algorithm doesn’t save anything over traditional parallel
4 0 :=6—add BGD - in fact, it requires more computation as it’s noising
5: the gradients at each step. However, it served as a milestone
6: transmit (6,) for checking that the noised gradients weren’t adversely
7: receive (01, n—1,nt1..N) affecting accuracies.
8: 0 .= combine (0;. n)
o ) Train Dev
10: else > Stochastic update Reforence 9954% | 96.57%
1 for K attempts, each worker node do - : :

’ . Assisted H-E ! !
12: db,, ;. == df + N(0,0?) > Sample random shift ssisted S | 29.80% | Jo.08%
13: on,k =0 — adgn)k Fig. 6. Assisted H-ES vs. reference.
14: 0y, = argming,s: forward_prop (T, 0, k) o o
15: From this, it seems the added randomization caused the
16: transmit (rseed,,, best_cost,) algorithm to overfit the training s§t 'a bit. This makes some
17- receive (rseed; n_1n41. N,best costy 1 pi1. SYSE: S the threshold for deciding whether a rapdom
18: 0 := combine (rseed;. n,best_costi n) perturbation was better than the unperturbed gradient is the

that subset. Now, the nodes must exchange parameters in
order to arrive at the combined updated 6 (from all nodes).
This is done in lines 7-9, and here, the full parameters must
be exchanged over the network. (This doesn’t necessarily
involve an all-to-all broadcast: some tree-like form of rout-
ing/replication might be used.) Regardless, a lot of data is
being sent at each iteration. In this algorithm, the combine
function could be a simple averaging of the parameters
received from all nodes, or it could be something more
elaborate.

Note that for Parallel Hybrid-ES, each worker node
needn’t necessarily train over a subset of the training set
(they could, though the algorithm is agnostic to training set
partitioning). The “Hybrid” in Hybrid-ES comes from the
fact that we’re still computing the full backprop gradient
once every r iterations. (r is a key hyperparameter that we’ll
delve into more later.) For these “full” iterations, parameter
broadcasting and updates work much like they do in the
standard algorithm.

However, for non-r-th iterations, the stochastic update
occurs. For K times, each node samples from a normal
distribution centered at 0 and with variance o2 (another key
hyperparameter) and adds this random shift to its previous
gradient value. Each shifted gradient is used to update a

cost function computed over a fraining set minibatch (since
the algorithm makes no assumptions about worker nodes’
access to the dev set). However, since the dev set is much
smaller relatively, it may make sense to just keep a copy of
it on each node for this purpose.

V. HYPERPARAMETERS DEFINITIONS AND SEARCH

The Hybrid-ES algorithm adds the following hyperparam-
eters to the model:

o K, the number of random perturbations tried by each
worker node upon each iteration.

o 7 - the interval for performing a full backprop gradient
calculation, as opposed to stochastic. Higher values of
r mean the full gradient is computed less frequently.

o (u,0?) for the random shift matrices. Initially, we set
i =0 and 02 = 0.1 (more on this later).

The number of worker nodes present, /N, might also be
considered a hyperparameter. However, for the remainder of
the work, we let K be the sole parallelization factor in the
algorithm.

r is particularly important, as it both influences the accu-
racy of the H-ES algorithm, and also defines the resource
savings of H-ES over BGD. Consider the following results
for varying values of 7 (each with o2 = 1.25):



Train Dev
Reference 99.54% | 96.57%
Assisted H-ES (r = 1) | 99.85% | 96.08%
H-ES, r =2 96.80% | 94.21%
H-ES,r =3 95.34% | 93.06%
H-ES, r =4 94.21% | 92.23%
Fig. 7. Algorithm accuracies, varying 7.

As we can see, increasing the full-backprop interval results
in a fall-off of both the training set and dev set accuracies.
This makes sense, as we don’t expect the stochastic gradients
to be as dialed-in as the analytical gradient. For » much
greater than 3, Hybrid-ES becomes uncompetitive with the
reference implementation, but of course the definition of
acceptable accuracy can vary from task to task. For some
tasks, the large resource savings may be worth it (more on
this later).

Concerning the N(0,0?) shift matrices, there is no real
theoretical justification for sampling from a normal distribu-
tion. Indeed, the strong periodicity of Figure 3 means that
a smarter means of sampling may produce better stochastic
gradients. Assuming Gaussian noise, a mean of 0 is natural,
and initially, 02 ~ 0.1 came from an empirical observation
of individual gradient components early-on in training. (It
turned out that a much higher value of 02 = 1.25 was
the optimal setting.) In the future, it may be interesting to
consider setting o2 with momentum or a similar scheme, as
the gradients’ individual components may also stabilize in
magnitude as training proceeds.

Here are results from varying values of o2 (each with
r=2):

Train Dev
Reference 99.54% | 96.57%
H-ES, 02 = 0.01 | 96.49% | 93.58%
H-ES, 02 =0.1 | 96.54% | 93.73%
H-ES, 02 =05 | 96.72% | 94.01%
H-ES, 02 = 0.75 | 96.69% | 93.98%
H-ES, 02 =1.0 | 96.78% | 94.16%
H-ES, 02 = 1.25 | 96.80% | 94.21%
H-ES, 0?2 = 1.5 | 96.86% | 94.09%

Fig. 8. Algorithm accuracies, varying o2.

As we can see, 02 = 1.25 seems to be the optimal

fixed variance (per dev set accuracy), though we expect
this specific number to depend strongly on the underlying
network. Note that 0?2 = 1.0 is also competitive: this
might be due to an effect of different o?s being better for
earlier vs. later training stages. In the future, we hope to
simultaneously sweep o2 while also sweeping r for a more
complete analysis. Figures 9 and 10 are the loss and accuracy
plots for K = 10, r = 2, and 0% =1.25, demonstrating H-
ES’s training progress.

09 — Avg. training loss
- Avg. dev loss

08 4

071

064

054

CE loss

04

031

02

01

T T T T T
0 '5 10 1'5 20 25 30

# epochs
Fig. 9. H-ES training losses.

accuracy

—— Avg. training accuracy
084 Avg. dev accuracy

0 5 10 15 P % 0
# epochs

Fig. 10. H-ES training accuracies.

As a final exploratory exercise, we also considered nor-
malizing the gradients to length one before shifting. We
surmised that this might help, given that we had fixed o2 (so
forcing the gradient to start out at a certain magnitude might
homogenize the effect of adding the fixed-variance random
shifts). As we see in Figure 11, normalizing the gradients
adversely affected both accuracies, so we didn’t continue
with it. Interestingly, it also caused the training and dev set
accuracies to converge, so it seemed to serve as a (very poor)
regularizer. Normalizing the gradient is rarely performed in
practice.

Train Dev
Reference 99.54% | 96.57%
Normalized reference | 93.69% | 93.23%

Fig. 11. Reference vs. normalized reference.

Apparently, the gradients’ magnitudes are important, even
if they don’t change much across iterations (see Figure 2).

VI. PERFORMANCE AND RESOURCE
UTILIZATION MODEL

As the primary goal of H-ES is approximating BGD with
lower overheads, we created a resource utilization model and
analyzed it for varying values of r. We model wall-clock
runtime, memory consumption, and network bandwidth (note
that TX and RX bandwidth can be considered the same



across an entire cluster: every sent packet must be received
somewhere). Here are the results in graphical and tabular
form:

In general, the resource models follow the pseudocode
given in the Algorithms section. See the provided source
code for details. Runtime was measured empirically using
Python’s time.time() method. Memory consumption was
calculated based on a liveness analysis of variables in the
algorithms’ methods, and the size of the matrices. Network
bandwidth was similarly calculated using matrix sizes.

Overheads normalized to parallel BGD

Emm Baseline
mm H-ES, r=2
s H-ES, r=3

Runtime Memory Network BW

Fig. 12. H-ES resource utilization graph.

Runtime | Memory | Net BW
H-ES, r =2 | 120.8% 66.7% 50.0%
H-ES, r=3 | 127.7% 55.6% 33.3%
Fig. 13. H-ES resource utilization table.

It is interesting to note that in the results above, H-ES
actually loses out in runtime versus the baseline model!
However, we believe this is due to artificial limitations in
our testing setup. First, we assume that sending data over the
network is instantaneous (takes O time), which likely leads to
a conservative estimate of H-ES’s runtime savings. Second,
we measured the wall-clock time taken by forward prop and
backprop, and found that, for our small net, forward prop
actually takes slightly longer (which we don’t expect to be
the case for a larger net). This may be due to a cold-cache
effect, since we perform forward prop first (for backprop, the
data is already loaded into the cache). See the model source
code for details.

For memory overheads, we indeed see H-ES winning
out (as it doesn’t need to store all the chain-rule gradient
components). Likewise, H-ES saves significantly on network
bandwidth, essentially by a factor of % (since each node only
needs to send two scalars for the stochastic updates).

Finally, note that the efficiency of H-ES does depend on
the relative efficiency of generating pseudorandom numbers.
However, both modern CPUs (via RDRAND [5]) and mod-
ern GPUs (via cuRAND [6]) include hardware-accelerated
PRNGs, so we expect PRNG generation within a node to
be faster than broadcasting huge parameter matrices over a
network. In the future, we plan to measure this empirically.

VII. HYBRID-ES WITH A CONVNET

Though most of the design and evaluation of H-ES was
performed with the MLP on MNIST, we also wanted to
see how it behaved on a convolutional neural net. We
evaluated Assisted H-ES on a small MNIST ConvNet, with
5x5x6 CONV — 2x2 MAXPOOL — 5x5x16 CONV — 2x2
MAXPOOL — tanh activation — 10-class softmax output
layer. The code (in convnet-h-es.py) uses the Autograd
[7] NumPy automatic differentiation framework. This grants
us the easy ability to take gradients without the full API
overhead of something like TensorFlow [8] or Keras [9].

Unfortunately, the increased size of the net made training
more intensive. In the interest of time and space constraints
for this paper, we omit a detailed hyperparameter search,
and instead highlight the number of “improvements” (lower-
cost stochastic updates, with cost computed over the entire
dev set) that Assisted H-ES was able to make in its training
batches. Here, each batch contains 256 examples, with K =
10 and 02 = 1.0:

Training batch index # | # improvements
1 5
2 10
3 6
4 2
5 4

Fig. 14. ConvNet Assisted H-ES, number of improved updates.

As we can see, even minus any hyperparameter search,
Assisted H-ES can make useful updates.

VIII. RELATED WORK

Much of the inspiration for this work was taken from Ope-
nAl’s Evolution Strategies works [2], [3], as here we adapted
ES to a supervised learning setting. OpenAI’s method also
uses Gaussian noise for the random shifts. [4] provides a
nice summary of several black-box optimization techniques
with examples. Yann LeCun’s MNIST dataset [1] was useful
in tuning the H-ES algorithm.

IX. FUTURE WORK

After completing this initial exploratory work, the most
interesting avenue for further progress seems to be extracting
information from the periodicity of the gradient. Gaussian-
shifting the matrices is simple, but it potentially throws
away a lot of information captured by that periodicity.
Future investigations will center on the gradients’ behaviors:
specifically, how we can use that information to adjust the
gradients in a more precise direction. Finally, recall that the
overall goal of the work is not to produce an algorithm that
is more accurate than traditional backprop; rather, its goal
is to approximate backprop with something computationally
cheaper and more parallelizable. To this end, we hope
to demonstrate H-ES running across a real (and possibly
heterogeneous) parallel compute cluster, and measure its
resource savings entirely empirically.

We are excited by our initial findings, and will work to
improve the H-ES algorithm in the near future.



X. CONTRIBUTIONS

Andrew (Andy) performed all experiments, coding, and
report writing. Andy’s roommate, Sabeek Pradhan, suggested
investigating the OpenAl ES method [2] [3] for supervised
learning.

Code for the experiments is available on GitHub,

at

https://github.com/andrewbartolo/

CS230-Project. Here, you'll find code for the MNIST
MLP base network, the runtime, memory, and network
bandwidth model, and the Autograd ConvNet Hybrid-ES
code.

(1]

[2

—

3

=

[4

[}

[5

—

[6

—

[7

—

[8

—

[9]

REFERENCES

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-
based learning applied to document recognition.” Proceedings
of the IEEE, 86(11):2278-2324, November 1998. Dataset from
http://yann.lecun.com/exdb/mnist/.

Evolution Strategies as a Scalable Alternative to Reinforcement Learn-
ing. OpenAl blog. https://blog.openai.com/evolution-strategies/
Evolution Strategies as a Scalable Alternative to Reinforcement Learn-
ing. (full paper) https://arxiv.org/abs/1703.03864

Gradient-Free Optimization. Stanford AA222.
http://adl.stanford.edu/aa222/lecture_notes_files/chapter6_gradfree.pdf.
Intel Digital Random Number Generator (DRNG) Software Imple-
mentation Guide. Intel Corporation. https://software.intel.com/en-
us/articles/intel-digital-random-number-generator-drng-software-
implementation-guide.

The NVIDIA CUDA Random Number Generation library (cuRAND).
Nvidia Corporation. https://developer.nvidia.com/curand.

Autograd. Dougal Maclaurin, David Duvenaud, and Matt Johnson.
HIPS. https://github.com/HIPS/autograd.

TensorFlow: A System for Large-Scale Machine Learning. Abadi et.
al. https://tensorflow.org.

Keras: The Python Deep-Learning library. https://keras.io.



