PokeNet: Predicting Pokemon Card

Features Through Deep Learning
Eddy Albarran and Piper Keyes {albarran, pckeyes}@stanford.edu

Abstract
Here we present a collection of Deep Learning networks (i.e. PokeNet) to predict various features of
Pokemon cards. Specifically, our models predict type, hit points (HP), and card price. We implemented a
5 layer neural net (SLNN), a convolutional neural net (CNN), and DenseNet-121 to accomplish these
tasks. We found that as the prediction task became more difficult (i.e. features to be predicted were less
visible or absent from the input data), we required a more complex architecture to achieve good
performance.

1 Introduction

Since its release in 1993, the Pokemon franchise has remained a prominent and beloved series in and
beyond gamer culture. One facet of this franchise is the Pokemon Trading Card Game, which utilized sets
of cards to simulate Pokemon battles based on the original game. Here, we present a set of Deep Learning
networks, which we refer to as PokeNet, that predict features of these cards. Specifically, our networks
take the image of the cards as input and predict the type and HP of the Pokemon depicted on the card, as
well as the price of the card. This project touches upon various important topics in computer vision, such
as extracting explicit (e.g. type) and subjective (e.g. price) information from images of objects.

2 Related Work

There is limited published work regarding the prediction of the price of objects. We derived some
inspiration from prior work that used Deep Learning to predict stock market price [1][2], but these
implementations did not utilize image data. We turned to architectures that would help with our computer
vision task, deciding to use the DenseNet-121 model [3], a state-of-the-art model which has been shown
to outperform other commonly used computer vision architectures, such as ResNet. We expected this
model would perform better than a simple CNN given DenseNet’s increased connectivity between distant
layer of the network. We also leveraged previous techniques for class activation mapping [4][5].
expecting that our type and HP prediction tasks would utilize aspects present in the card images, such as
the color of the card and the text present on the card, whereas saliency maps derived from price prediction
models would have more complex saliency as there is no explicit information on the card related to price.

3 Dataset and Features
We used Scrapy to scrape https://pkmncards.com/ to generate our dataset. From this webpage we gathered
image urls of each currently available Pokemon card (9791 total) as our input data (Fig. 1, left) and

information about each card, including the pokemon’s type and HP, as well as the low, mid, and high
estimates of the current market price of the card (pkmn_spider.py). The data were cleaned and stored in a
JSON file (cards.json) for preprocessing (json_editor.py).

Next, we extracted each card’s values by iterating through the json object. For each card, we loaded the
image using the url, rescaled the images to 224x224x3, and vectorized them into 1D arrays
(pkmn_create_data.py). Card arrays were horizontally concatenated into a (224%224%*3) x 9791 matrix
and saved as a . TXT file (X.txt). Corresponding 1 x 9791 label arrays/lists (Y_type, Y_price, Y_HP) were
each saved as separate .TXT files. We also saved the rescaled image as .JPEG files

(pkmn_save_cards.py). Finally, we created two load functions: pkmn_load data vec.py, which reads in
the .-TXT files and creates a numpy matrix corresponding to all vectorized images, as well as 1x9791
arrays/lists for the corresponding labels. pkmn_load data _img.py uses the saved .JPEG files to create a
9791x224x224x3 numpy matrix (storing all card images) as well as the 1x9791 label structures. After
loading our data, we normalized (divided values by 255), shuffled, and divided it into train/dev/test sets
by an approximate 80%/10%/10% split (7832 cards/979 cards/980 cards, specifically).

4 Methods

4.1 SLNN (type-classification, HP-regression)

To examine the utility of a simple neural network on our prediction tasks, we implemented a SLNN. This
model was fed vectorized images of cards that propagated through five layers. The hidden units contained
in each layer were 512, 512, 256, 128, 12. Each layer performed a linear computation followed by a

ReLU activation function apart fI'Ol’Il Raw train example Scaled example Inputlayer Layer1 Tayer2 Tayer3 Tayer4 Tayer 5/output

the output layers. For classification o
. o E
tasks (i.e. type), we used a softmax | e z
. . . L - e A E E |
activation with a cross-entropy cost T— 2l — Sl — 2l — ¢ <12
. T . = = = = =
function. For prediction of a linear |- : 2 = 5
value (i.e. HP), we used a linear | woese v Ssneurons 5

12 neurons
512 neurons 512 neurons

Linear

-—' numerical

output

output layer, with mean squared error

Fig 1. Example input image (left) and 5-layer neural network architecture.

(MSE) as the cost function.

4.2 CNN (type-classification, HP-regression, price-regression)

We employed a CNN approach for classification and regression tasks, wanting to compare the
performance of the SLNN and CNN implementations (Fig. 2). Input images were rescaled to 224x224 for
input into our model consisting of two CONV2D (ReLU activation) + MAXPOOL blocks, followed by a
FC layer with 12-unit softmax output (cross-entropy loss) for type classification or a single-unit linear
output (MSE loss) for HP/price estimation. Adam optimization was used to update the CNN weights.

PGrlss
-c PWIEV
(<7} Pughtning
k¥] — | Pre
,@ PPsychk
Max Pool Conv2D Max Pool E
8 PN/A
(28x28x8) (28x28x16) (7x7x16) é Linear
(224x224x3) (224x224x8) esx 2 —— numerical
(600x825x3) output
Fig 2. Convolutional neural network architecture.

4.3 DenseNet-121

Finally, we wanted to compare the price-prediction performance of our naively trained CNN model to that
of a pre-trained model, re-trained on our task (i.e. transfer learning). We decided to retrain the DenseNet-
121 model (pre-trained on ImageNet; Fig. 3). Input images rescaled to 224x224 were suitable for
DenseNet-121. The first 420 layers were frozen and we added two additional dense layers (ReLU
activation, dropout) with a single-unit linear output (MSE loss) for price estimation.

Convolution
Convolution
Convolution

- 4 Linear
M | - >« o « =[N —| — numericall
output
(224x224x3)

(600x825x3)

Fig 3. DenseNet-121 architecture. 420/426 layers were frozen during training while the remaining 6 layers and 4 additional custom layers

5 Experiments

5.1 Type classification

We first tested our SLNN on type classification. We
performed extensive hyperparameter tuning (Fig. 4). First,
we tested various learning rates (5.0e-3, 5.0e-4, 5.0e-5)
and found that both 5.0e-4 and 5.0e-5 performed well,
with 5.0e-5 resulting in the best train and dev accuracy
rates. We next sought to address bias in our model by
training it for longer. We found that increased the epoch
number improved our train accuracy with both the 5.0e-4

Itertation 1:identify Itertation 2: address bias by
optimal learn rate increasing epoch number

Itertation 3: adress
variance with L2 norm

Learning rate

5.0e-3]5.0e-4/5.0e-5]5.0e-445.0e-4[5.0e-5[5.0e-545.0e-4 5.0e-445.0e-5| 5.0e-

Epoch num 150 | 150 | 150 § 250 | 350 | 250 | 350 § 350 | 350 350

350

Betavalue

1.0e-3] 1.0e-4]1.0e-3|1.0e-4]

Train accuracy §0.1460.930 |0.959] 0.963]0.979 | 0.984 |0.996 | 0.997| 0.997] 0.999

0.995

Dev accuracy §0.158|0.914 {0.953§0.9510.951 |0.959 |0.971] 0.978] 0.976| 0.971

0.973

Final cost 2.3340.3700.225 § 0.178/0.104]0.101 | 0.050 § 0.618] 0.114} 0.780

0.136

Fig 4. Hyperparameter search for type classification with
SLNN. Search was broken into three iterations with a
defined goal.

and 5.0e-5 learning rates, with 350 epochs performing the best in both cases. By improving the bias, we
introduced variance into the model and sought to address this with .2 normalization. We found that 1.2
normalization slightly improved the variance of our model when used with a learning rate of 5.0e-4, 350
epochs, and a beta value of 1.0e-3. Our final train/dev/test accuracies were .99/.98/.98.

Cost for CNN classification of 'TYPE'

w— LR = 0.09
we= LR = 0.009

25 = LR = 0.0009

Cost (cross-entropy)

0 20 40 60 80
Iterations

Fig 5. CNN costs across epochs by
learning rate when predicting price.

Next, we tested our CNN on this classification task. We trained our
CNN model using 3 distinct learning rates (0.09, 0.009, and 0.0009)
for 250 epochs (Fig. 5) and observed that a learning rate = 0.09
achieved the best accuracy (.972/0.97/0.968, train/dev/test
respectively). We decided to leverage the CNN architecture to
visualize model classification by generating class activation maps
(CAMs) for various test inputs (Fig. 6). CAMs for each class (type)
were generated by summing over the product of (weights for a
specific class) * (the input features of a specific input image), where
weights act as relative importance of those features for a given
classification. CAMs revealed that our CNN model gave large

weight to color features when determining type classification of cards with a type. Because colors
depicted on the background/border of cards typically correspond to Pokemon type, these areas
unsurprisingly had high activation. However, for non-typed cards like Trainer cards, our CNN model paid

particularly attention to the text on the card.

Both S5LNN and CNN approaches achieved good
performance on type classification. Although the SLNN
approach yielded better accuracy, the CNN approach
achieved comparable accuracy with only 60% the training
time. The high accuracy is perhaps expected given the
relative ease of this task for humans and the strong
correlation between card colors and card type. There were
however, a small subset of cards whose color did not
correspond well with its type, which were problematic for
these models (e.g. Fig. 6, right).

5.2 HP prediction

Incorrect pred.

5 Charizard GX L9509
hackerd S

£

N
_ 7‘ R \\F’)j\\l

normalized CAM val

Pya=0.79

0.5

Fig 6. CAMs for two cards with correct type prediction
and one with incorrect type prediction.

We tested our SLNN on this prediction task with hyperparameter tuning. We found that using the same

learning rates used for the type classification task (5.0e-3, 5.0e-4,
5.0e-5) and 150 epochs of training that our model did not perform
very well. Each pokemon card has an HP that is a multiple of 10,
and the best train and dev RMSE we achieved on this task were 23.8
and 23.6, respectively. Thus, the SLNN achieved about + 2 HP
levels. When increasing the epoch number to 250 and using the best
learn rate (5.0e-4), we found that the train and dev RMSE improved

Cost for CNN regression of 'HP'
5000

LR = 0.09
w— LR = 0.009
= LR = 0.0009
4000

3000
2000

1000

Cost (MSE)

0
0 50 100 150 200 250
s

slightly to 18.7 and 20.1, and our test MSE was also 20.1.

Input

Fig 7. CNN costs across epochs by learning
rate when predicting HP.

For our CNN implementation we modified the output layer
of the model used previously for type classification, this
time utilizing a linear output and MSE as the model loss.
We trained our model for 250 epochs using various learning
rate values (Fig. 7) and once again found learning rate =
0.009 to be the most optimal, achieving RMSE of

?Z 8.6/9.8/8.5 for train/dev/test respectively, half the error of

% % the SLNN approach. Once again we generated CAMs for
'Té our predictions (in this case, with no classes, we refer to

g these as a saliency maps) and observed that input features

%’ES :PP 19862 %rﬁ: :FF: 35'1 corresponding to text were weighted heavily, including the

Fig 8. Saliency maps of CNN HP prediction. text on the cards that note the actual HP of the card (Fig. 8).

The task of HP prediction was intuitively more difficult than type classification, thus we were not
surprised that our SLNN model performed poorly. Our CNN model achieved relatively good performance

(HP is always a multiple of 10 and our avg error is <10). It is likely that a text-recognition based approach
would be able to perform better on this task given that the information for HP is located on the card itself.
Interestingly, computed saliency maps reflected the fact that our models did not solely focus on HP text in

generating HP predictions (Fig. 8).

5.3 Price prediction

We first approached the price-prediction task by utilizing our CNN
implementation used for HP regression. We trained our CNN model
for 250 epochs across three different learning rates (0.09, 0.009,
0.0009) on all three price point labels. In order to account for the
fact that card prices are not normally distributed (which introduces
an accuracy bias towards lower prices) (Fig. 9), we employed a
MSE cost function weighted by a function corresponding to the
inverse of the price distribution. A learning rate of 0.009 gave the
most optimal performance for 250 epochs (Fig. 10), with RMSE
values 0f' 0.09/0.11/0.10 (train/dev/test) on low-price, 0.19/0.31/0.25
for mid-price, and 0.52/0.64/0.58 for high-price predictions.

Cumulative Price distribution

10000

— low
—— mid

8000 ===:high

6000
9000

4000

Number of cards

8000

2000

7000
0.0

0 1000 2000 3000 4000 5000
Cost

Fig 9. Cumulative distribution of card prices.

Lastly, we employed transfer TR O e a1 el
learning on DenseNet-121. We | = = aleom ==
utilized a learning rate of 0.009 |~ o

(optimal across 0.09, 0.009, and [¢”

0.0009), momentum of 0.9, and " ‘L
minibatch size of 128, for at . = g Ao e -
least 200 epochs (Fig. 11). Fig 10. CNN costs across epochs by learning rate when predicting low, mid, and high price.

Using MSE as the model loss,

we arrived at final RMSE values of 0.07/0.09/0.098 for train/dev/test on low-price, 0.15/0.24/0.23 for
mid-price, and 0.29/0.39/0.58 for high-price predictions. Together, our CNN implementation resulted in
an average test error of ~$0.25 (mid-price) and the DenseNet-121 transfer learning approach achieved
slightly better results with an average test error of ~$0.23. Distribution plots show that only 2.34% of total
mid-price cards are below this cost. Finally, as depicted in a generated saliency map from our CNN (Fig.
12), our model utilized a complex weighting of color, text, and background features in generating price
prediction.

Cost for DenseNet121 regression of ‘price-low"

Cost for DenseNet121 regressior rice-mid' Cost for DenseNet121 regression of ‘price-high'
of learning rates) of learnin ()

n of 'p
g rates) (comparision of learning rates)

Input

T R-009 =00
= ren 5 — LR=0009 — (R=0009
200 = LR 00005 — LR = 0.0009 40000 | — LR = 0.0009

w0 : -t
30000 G

8
(MSE)

% 20000

[

50 10000

CAM

| —

normalized CAM val

25 50 75 100 125 150 175 200 25 S0 75 100 135 150 175 200 25 50 75 100 125 150 175 200
teratio iterations

0
Pred mid price: $49.90

Fig 11. DenseNet costs with different learning-rates for predicting low, mid, and high price.
True mid price: $64.90

Fig 12. Saliency map

6 Conclusions/Future work

We found that predicting type could be accomplished with almost perfect accuracy by either the SLNN or
the CNN, and saliency mapping showed us that the CNN used either the dominant color of the card or
text to make its prediction. For predicting HP, the CNN approach outperformed the SLNN model and we
expect if we trained the CNN for longer, we could achieve even better results. Furthermore, as HP is
factors of 10, we could use a softmax activation output layer with cross-entropy cost function and
compare its performance with our current regression implementation. Additionally, it may be worth trying
to predict HP after cropping the text that explicitly states HP out of the card, to see how our networks
utilize the other information present in the card to predict HP. Finally, both our naive CNN and pretrained
DenseNet models performed relatively well on predicting price. Further tuning of how many layers we
freeze during re-training of the DenseNet or changing details of the added layers might improve future
performance. In summary, the work presented here forms the basis of our ultimate goal of creating a real-
life Pokedex, an application that, when shown any picture of a specific Pokemon, can predict all of the
features of that Pokemon and display it to the trainer. This application would fulfill a life-long dream of
many people that once, and perhaps still, aspired to become Pokemon Masters.

7 Contributions

Both authors contributed to the design of the project, training, analysis/interpretation of results,
debugging, and production of deliverables for the project. Piper wrote the web scraper and the SLNNs.
Eddy wrote the scripts to vectorize and load the pokemon cards as well as the CNNs, and adapted and
customized the DenseNet-121 and CAM functionality from previous implementations. All code can be
found at: https://github.com/pckeyes/PokeNet

References

[1] X. Ding, Y. Zhang, T. Liu, J. Duan. Deep Learning for Event-Driven Stock. IJCAI 2015.

[2] R. Akita, A. Yoshihara, T. Matsubara. Deep learning for stock prediction using numerical and textual
information. /EEE ICIS, June 2016.

[3] G. Huang, Z. Lie, L. van der Maaten, K. Q. Weinberger. Densely Connected Convolutional Networks.
ArXiv e-prints, January 2018.

[4] K. Simonyan, A. Vedaldi, A. Zisserman. Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps. ArXiv e-prints, December 2013.

[5] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba. Learning Deep Features for Discriminative
Localization. Computer Vision and Pattern Recognition, 2016.

