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Abstract

The goal of this project was to to convert computerized tomography (CT) scans
into 3-dimensional volumes that deep learning architectures could use to detect
early stage lung cancer. A secondary goal is to see if relevant features for cancer
detection are maintained through the downsizing of stored volumes.

1 Introduction

Lung cancer is one of the most common types of cancer and the leading cause of cancer death
[1]. Early detection of lung cancer enables proactive treatment that vastly improves the chances of
survival. However, early stages of cancer are difficult to detect due to the small size of tumors at this
stage. Often, lung cancer is not easily detectable until it has progressed significantly [1]. It may be
possible to use CT images of the lung to train a deep learning algorithm that can detect lung cancer
during its earlier stages. If successful, this algorithm could be used in Computer-aided diagnosis
(CAD) that helps improve accuracy of early diagnosis in at risk patients.

Currently, CT scan data comes in the form of cross section slices that deep learning frames works
can parse through one at a time to detect tumors that are malignant. However, this approach requires
storage and processing of large amounts of data that makes training expensive and slow. We aimed to
use 2D and 3D CNNs to explore whether reduced-size 3D volumes generated from the CT slices for
a patient are sufficient for binary classification of cancer in patients with and without early stage lung
cancer.

2 Related work

Many current machine learning algorithms consider individual CT scan slices when looking for
tumors [2,3,4]. Using individual slices results in less computationally expensive training because
of smaller data input that the model has to consider compared to the 3D model that we created to
consider entire volumes. However, we wanted to determine if looking at multiple slices concurrently
in the form of a 3D volume would improve learning.

Another popular technique is the use of Artificial Neural Networks [5,6]. These models are inspired
by networks of biological neurons, in which the neurons compute output values from inputs. These
models’ goal is to solve problems in a similar way as the human mind would. Since tumor detection
in lung CT scans is a task that is normally performed by humans, this approach is intuitive. Unlike
humans, however, deep neural networks could learn to consider multiple slices at a time and learn
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unintuitive features that improve the overall accuracy of classification. Because of this, we aimed to
explore 3D CNNs.

3 Dataset and Features

Our data comes from the Kaggle Data Science Bowl 2017 which contains lung CT scans of 2100
patients [7]. Each patient was labeled either O for no cancer diagnosis within a year or 1 for cancer
diagnosis within a year. Approximately 70% of the patients in the dataset did not have early stage
cancer whereas the remaining 30% percent did. We attempted to address the class bias within the data
by weighting the loss from misclassifying each class differently such that misclassifying a patient
with lung cancer resulted in a greater loss than misclassifying a patient without lung cancer. Each
patient folder contains a variable number of CT scan slices. Each slice is a 512 x 512 image provided
in the DICOM format. After preprocessing the images as required, we ran this data set through our
CNNs s to classify CT scan collections for early stage cancer with 80% in the training set and 20% in
the validation set. We evaluated our results quantitatively by examining binary cross entropy loss and
accuracy for both training and validation sets.

4 Methods

Preprocessing

Our preprocessing steps for the DICOM files for each patient were based on a Kaggle kernel from
the competition the data set came from [8]. For each patient in the data set, we start by stacking all of
the CT slices onto each other to create a 3D image of the lung. Next, we convert the pixel values of
the 3D image to Hounsfield Units (HU), the measurement of radiodensity used for CT scans. Since
we are not interested in bones, air, and other non-lung tissue objects that have radiodensity, we used
thresholding to segment the lung tissue from the rest of the 3D image and reduce overall noise of
the data. Lung tissue generally has HU of —500 whereas air has HU of —1000 and bone has HU of
+700]8]. Therefore, to perform thresholding, we set any pixels with HU value of —320 or higher as 1
and all else as 0. After segmentation, the pixel values of the 3D lung images are normalized and zeroed
to be between 0 and 1. Finally, we downsize the 3D images using the Tensorflow resize_images
function with an area interpolation filter before padding images as required to construct a NumPy
array for both the training and validation sets.

Figure 1: Preprocessed lung



Processing/Architectures

When looking for a framework we had difficulty finding a neural network set up for three-dimensional
network, so we instead opted for one that works for two-dimensional networks and work from there.
When searching, we settled for a project on github named cnn finetune as it already had support for
transfer learning. We knew that was a feature we wanted to try and use so this repository was a good
starting point. In addition to this, the repository had a couple of pre-built models to use. The ones
that we decided to experiment with using were their densenet and their resnet models, as these were
models that we were familiar with because of their use in class. To make our dataset which was in
3D compatible with this model in 2D, we decided to flatten the vectors into a 2D shape instead.

Additionally, we developed two 3D CNN architectures from scratch. The first was based on the
UNet architecture described in [9]. First, the 64x64x64 volumes are run through 3D convolutional
layers while being downsampled to a size of 8x8x8. Then, downsampling layers are replaced with
upsampling layers so that the output of the last 3D convolutional layer is of size 64x64x64. Lastly,
the output from this 3D convolution is run through a batch normalization layer, followed by a
flattening layer, two fully-connected dense layers, and finally a sigmoid activation layer that makes a
prediction.
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Figure 2: 3D UNet Model

Because UNet implementations are better optimized for segmentation tasks rather than binary
classification, we opted to implement a more traditional 3D CNN that was deeper. The second 3D
CNN removes the upsampling steps of the UNet implementation and instead uses additional 3D
convolutional layers.
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Figure 3: 3D CNN Model

5 Experiments/Results/Discussion

After running our models, the best loss and accuracy achieved for each model is as follows:

Training Loss Training Validation Loss | Validation
Accuracy Accuracy
ResNet-152 0.5926 0.7295 0.6239 0.7000
DenseNet-161 0.6007 0.7240 0.6206 0.7000
3D-UNet 23.636 0.7373 34.1301 0.6975I
3D-CNN 1.4112 0.7373 0.1390 0.6975

Figure 4: Best Training and Validation Loss and Accuracy

We also tuned our hyperparameters to optimize our algorithms:

3D UNET
Learning Rate | Drop_rate Training Loss | Training Accuracy | Validation Loss | Validation Accuracy
0.045 03 29.6355 0.7373 34.1301 0.6975
0.045 0.5 35.2647 0.2627 33.3594 0.3025
0.045 0.1 29.6355 0.7373 34.1301 0.6975
0.0003 0.3 35.2647 0.2627 33.3594 0.3025
3D CNN
Learning Rate | _Drop_rate Training Loss__| Training Accuracy | Validation Loss | Validation Accuracy
0.045 0.4 14112 0.7373 0.139 0.6975
0.045 0.5 1.4075 0.7342 0.1392 0.6975
0.045 03 1.6793 0.2627 0.139 0.6975
0.045 0.1 1.6443 0.3196 0.139 0.3025

Figure 5: Hyperparameter Tuning

In looking at our results, it seems that all of our models performed roughly equivalently on the dataset
(70% accuracy). This was unexpected since we tested both 2D and 3D models, yet they yielded
the same results. Later analysis of the 3D-CNN revealed that specificity was 1.0 and sensitivity
was 0, which means that the classifier was not learning useful features and was instead taking
advantage of the class bias of the data set. This was found to be the case across all of our tested models.



It is likely that downsizing all dimensions to 64 resulted in loss of detectable cancer features. To
handle this issue, we re-ran the 3D-CNN on the dataset before it was downsized completely to see if
any features could be learned. However, this was not sufficient to prevent overfitting to a single class
(result not displayed). By altering hyperparameters like learning rate and dropout rate, we could push
the classifier to focus entirely on specificity (all Os) or on sensitivity (all 1s), but we could not get
the classifier to converge in between. It is likely that the class bias in the dataset presents two local
minima in the loss function in which the classifier gets stuck once it converges to them.

6 Conclusion/Future Work

Since we may have lost detectable features from downsizing the volumes, we should re-run the
initial lung volumes through our architectures to determine if any detectable features may be learned.
However, the initial size of the volumes (400 x 400 x 500) are too large to be run in their entirety
on available machines. Therefore, we should explore how to detect regions of interest so that the
subspace the algorithms must search over are much smaller. Segmentation algorithms might present
the best method of detecting these regions of interest. Additionally, we could add residual blocks to
our 3D-CNN to improve its ability to learn new features over additional layers.

7 Contributions

Ankit Baghel was primarily responsible for downloading the Kaggle dataset, preprocessing the slices
into 3D volumes with desired dimensions, and generating the training and validation sets as NumPy
arrays. He also implemented the 3D UNet and 3D CNN architectures used in the project using Keras.
Lucas Ramos was primarily responsible for performing the fine tuning on the cnn finetune Github
code that was used for transfer learning. Both made equal contributions to the final paper and poster.

8 Contributing Code

All code used can be found on Gradescope and at the following Github repository
https://github.com/ramosl/lungclassification
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