Predicting Cryptocurrency Price Fluctuation Based
on Twitter, Media, and Currency Data With an
LSTM-RNN

Alex K. Fine
Stanford University
afine@stanford.edu

Abstract

This algorithm is designed to provide investment insights that mitigate investor
risk. I build upon prior work to predict binary price change across 100 currencies
through an analysis of previous behavior, tweet data, and news data. Overall,
prediction quality was varied and hard to evaluate. The model did perform better
than expected, reaching 90% accuracy very short temporal regions. However, this
high accuracy could be heavily attributed to training data that skewed heavily in a
single direction.

1 Introduction

1.1 Motivation

Most Americans have loans, most Americans have money in the bank, and most Americans aren’t
investing. This is a problem.

When I arrived at college I took a part-time job to help cover some of the many expenses. After a
few weeks I had a little money and knew that it should be invested, as opposed to sitting idle in a
bank account. However, when I tried investing, I realized that I didn’t know what I was doing. Even
after many hours of research I was left lost, with strategies barely better than random guessing. This
experience led me to realize that there is a serious disconnect in this country. 44.2 million Americans
have graduated with a collective 1.4 trillion dollars in student loans. However, less than 10% of
current college students invest, and even fewer invest strategically.

My motivation for this project stemmed from this realization. I wanted to give college students and
low-income individuals access to the same investment opportunities previously only available to the
hyper rich and highly educated. Additionally, I wanted to do so in a way that mitigates investor risk,
and encourages students to invest.

To help students, I first knew that I would need some way of identifying promising invest-
ments. A NN could solve this problem. Next, I wanted the investment opportunities to be
"cool" and appeal to college-aged students. With the most recent crypto-currency hype, this
choice was clear. Lastly, the students must feel safe investing. Therefore, I decided to design my
model around mitigating risk, as opposed to aggressively identify high-risk high-reward opportunities.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

1.2 Model

My algorithm is an LSTM-RNN that predicts price change in the 100 most traded currencies. Its
inputs are all stored per minute, and include the following:

1. Historic currency behavior
2. Aggregate Twitter sentiment for each currency

3. Aggregate news sentiment for each currency

I first execute a number of data processing and cleansing techniques as discussed in section 3. Next, I
run the data through a deep-RNN with multiple LSTM cells. Lastly, a softmax layer is applied that
returns a binary prediction for whether the currency’s price is going to rise or fall.

2 Related work

Researchers have invested considerable time into identifying arbitrage opportunities through social
media and news data. This work has yielded numerous learnings that can be grouped into two general
categories:

2.1 How to best analyze tweet data

Colianni et al.[SOURCE] and Pagolu et al.[SOURCE] have both published work demonstrating
tweets’ high correlation with market data. In "Algorithmic Trading of Cryptocurrency Based on
Twitter Sentiment Analysis"[SOURCE] by Colianni et al.[SOURCE], prediction accuracy increased
from 59% to 76% after tweets were processed with the Bernoulli Naive Bayes classifier and cleansed
of duplicates. Pagolu et al. demonstrated that through removing erroneous information (words) from
tweets and then running sentiment classification over the tweets, they could predict market change with
70% accuracy. One of the most cited works in this sub-field is by Stenqvist et al.[SOURCE]. These
researchers employed, among other things, an n-gram model to identify and remove promotional
tweets from their data-set. This helped to achieve a prediction accuracy of 83%.

2.2 The best models for crypto-currency predictions

Recently, Pagolu et al.[SOURCE]’s work has shown that LSTM’s could be outdone by an
autoregressive-recurrent neural network on temporal prediction tasks. They achieved 59% accuracy
through solely analyzing previous behavior.

These findings heavily informed my approach to cleansing the tweet data-set. Additionally, they
provided benchmark metrics that I could compare with my algorithm’s performance.

3 Dataset and Features

The dataset consists of 100k tweets from the Twitter Search API and a small (still incomplete)
list of crypto-currency related news articles from the Google News API, all stored on AWS’
S3. These are analyzed in conjunction with 2.4M price change data points, across 100 different
currencies, accessed through the CryptoCompare API. I also downloaded the historic minute
by minute bitcoin dataset to train on. In order to optimize performance, given that the Cryp-
toCompare API was limited to the past 36 hours, data was split into 95% train, and 5% for dev and test.

Tweets underwent the following pre-processing and normalization steps:

1. Remove promotional, spam and non-nonsensical tweets using a naive bayes classifier
2. Remove repeated tweets

3. Create an influence score for each tweet, derived from likes, favorites and replies

4.

Run sentiment analysis on tweets using Stanford’s "Deeply Moving" algorithm that’s
integrated into Stanford CoreNLP

5. Quantify each tweet by multiplying its sentiment by its influence score
6. Combine tweets into discrete, minute long, time periods and sum each tweet’s score

7. Normalize the dataset around 0
Currency price data underwent the following pre-processing and normalization steps:

1. Transform the price vector into a price change vector

2. Create a matrix of price change vectors that indicate the change in price over five different
time periods

3. Normalize raw change into percent change

4 Methods

4.1 The Two Model Structure

My algorithm executes predictions through the use of two separate LSTM-RNN models. The first
model is deep, with large input vectors of aggregated data. This model is designed to produce general
insights about crypto-currency price fluctuation. It allows currencies to be trained on a uniquely large
dataset. This dataset has 3.3M data-points, and is constantly growing. This massive dataset provides
the freedom of using a deep-RNN. The next model is initialized with the weights of the prior one,
but is optimized for each currency. Only that specific currency’s data is fed into the model. This
approach combines the benefits of big data and individual customization while building a model.

To test the effectiveness of my transfer-learning approach I compared the exact same algorithm run
with the two different initialization approaches. The standard transfer of weights approach improved
net accuracy by 1.5%. Below you can compare the two different initializations:

25

2.0

[

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

S

w

Figure 1: Random Initialization (Left), Transfer Learning (Right)

4.2 Overview

Both RNN models use mini-batch gradient descent and forward propagate with a multi-layer dynamic-
RNN and three LSTM layers. The algorithm takes the first input in the batch, processes it through
each hidden layer, and then recurrently repeats the process with the previous output state and the
next input. The final iteration produces a predicted return for each input set. My algorithm then uses
truncated backwards propagation to get the weight’s gradients.

A softmax layer is applied to the saved prediction set. Next, the total loss is computed using cross
entropy loss. After the loss is calculated, the Adam Optimizer[SOURCE] is applied to train the
model.

Loss = —% inn(X)—i—(l -Y)In(1 - X)

Outputs

Hidden Layers

Inputs

Figure 2: An illustration of a RNN with three LSTM cells

5 Experiments/Results/Discussion

5.1 Intro

Experiments for this project were two fold. First, the main RNN had to be optimized with low
variance to act as a good weights initialization matrix. Next, each currency had a model that needed to
be trained and optimized. I focused on optimizing hyperparameters for Bitcoin, because I suspected
that Bitcoin would have the most universal hyperparameters.

5.2 Early Training

Early training was very frustrating because I accidentally set the size of the LSTM cells too small
by a factor of 100. This made training confusingly ineffective. I optimized everything I could but it
didn’t help. Then, I realized that the states size was optimized at 256, as opposed to my earlier 4.
Luckily, the optimizations that previously had very little effect, now greatly improved the accuracy.

Training had another challenge in that training any given model could take many hours. Time-per-
epoch could differ massively between two models that could deliver similar qualities. I was forced to
choose one of two algorithms, one which returns higher and faster results in the short term, or an
algorithm which might out perform the other model in the long run.

5.3 Results

Prediction Results Evaluation Metrics
Training% | Test% | Normalized %
Bitcoin 1 Minute 76.41 54.13 50.23
Bitcoin 5 Minutes 83.32 57.34 54.01
Bitcoin 15 Minutes 82.24 55.34 50.67
Bitcoin 30 Minutes 79.2 55.06 52.24
Bitcoin 1 Hour 82.42 59.35 53.21

Hyper-Parameters: Currently, the algorithm has a truncated backprop length of 30, a state size
of 128, three layers, a betal of .9, a beta2 of .999 and a learning rate of .01. I believe these hyper-
parameters can be optimized further. My algorithm first groups the data into five batches, with a mini
batch size of 30 in each batch.

6 Conclusion/Future Work

Given the limited time frame of data that my model trained on, I would not recommend using it
for actual trading, nor would I declare my results scientifically conclusive. There are a number of
improvements I want to make on the model. For example, I plan on implementing a customized
loss function to penalize over-estimates more than under-estimates. This would have the effect of
predicting negative change really well, while predicting positive change with high precision, yet
low frequency. Additionally, I am experimenting with my model as a multi-class classifier and am
considering switching in order to potentially yield more precise predictions.

My model achieved its highest performance predicting the likelihood of price change five minutes
from a given time period.

7 Contributions

Aaron Moss provided guidance and help in implementing the twitter API.

I have always struggled with the implementation of algorithms as opposed to the concepts. In order
to help address my weaknesses, I wanted to do this project alone because I knew I would learn a lot
more.

References

[1] Andrew Jonathan Slottje. Ian Edward Shaw. Samuel Karl Joel Persson (2018) Hybrid
Autoregressive-Recurrent Neural Network Architecture for Algorithmic Trading of Cryptocurrencies.
Stanford CS 230.

[2] Abdulmalik Mahmoud Obaid. Dante Zakhidov. (2018) Predicting Cryptocurrencies Fluctuation
based on Public Opinion

[3] Connor Lamon. Eric Nielsen. Eric Redondo. (2018) Cryptocurrency Price Change Prediction
based on News and Social Media Sentiment. Stanford CS 230.

[4] Venkata Sasank Pagolu. Kamal Nayan Reddy Challa. Ganapati Panda. Babita Majhi (2016)
Sentiment Analysis of Twitter Data for Predicting Stock Market Movements. Stanford CS 230.
https://arxiv.org/abs/1610.09225

[5]1 EVITA STENQVIST. JACOB LONNO. (2017) Predicting Bitcoin price fluctuation with Twitter
sentiment analysis https://kth.diva-portal.org/smash/get/diva2:1110776/FULLTEXTO1.pdf

[6] Hong Kee Sul. Alan R. Dennis. Lingyao (Ivy) YuanTrading on Twitter: (2016) Using Social
Media Sentiment to Predict Stock Returns https://onlinelibrary.wiley.com/doi/full/10.1111/deci.12229

[7] Stuart Colianni. Stephanie Rosales. Michael Signorotti. (2015) Algorithmic Trading of Cryp-
tocurrencies Based on Twitter Sentiment Analysis

[8] https://github.com/muatik/naive-bayes-classifier

[9] Diederik P. Kingma & Jimmy Lei Ba (2014) ADAM: A METHOD FOR STOCHASTIC
OPTIMIZATION

