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Abstract

A large number of tasks in computer vision can be
represented as the translation from an input to an out-
put image. The application of recent deep learning ap-
proaches, in particular conditional generative adversarial
networks (cGANs), to the image translation problem has
shown promising results. In this paper we seek to combine
a proven framework for image translation with a recently
proposed GAN, the Wasserstein GAN (WGAN), that offers
a number of benefits compared to the vanilla GAN. Ulti-
mately, we find that while WGAN offers some benefits, it
does not produce a significant difference in the quality of
generated samples and thus may not be worth the increased
training time. We also present a new metric for measuring
the quality of generated samples, VGG cosine similarity.

1. Introduction

A large number of tasks in computer vision can be repre-
sented as the translation from an input to an output image.
For example, a given scene might be represented as an RGB
image, a field of gradients, an edge or blob map, or a seman-
tic label map. Recent research has defined image-fo-image
translation as the task of translating from one scene repre-
sentation to another given sufficient training data [3]. His-
torically these mappings have been obtained through spe-
cialized techniques for each specific problem, such as SIFT
or HoG to obtain gradient fields or the Laplacian of Gaus-
sian method for edge detection. Recent research has ex-
plored the possibility for a single, general-purpose frame-
work capable of translating images between arbitrary do-
mains.

The problem remains an open area of research, and for a
number of the problems mentioned above, traditional com-
puter vision techniques remain superior due to more rigid
assumptions and the rich understanding of the rules gov-
erning transformations between image representations. In
recent years, as data and compute has become increasingly
available, deep learning solutions are just now approach-
ing competitive performance on these tasks. Despite vast

amounts of data generated, labelled data is fairly difficult to
find but remains central to the performance of deep learning
approaches.

The application of recent deep learning approaches,
in particular conditional generative adversarial networks
(cGANs), to the image translation problem has shown
promising results. At the same time, significant work has
been invested in exploring alternative GAN formulations
that help improve to stability, reduce mode collapse, and
otherwise improve GAN training. In this paper we seek to
combine a proven framework for image translation with a
recently proposed GAN, the Wasserstein GAN, that offers
a number of benefits compared to the vanilla GAN. We ex-
plore whether or not the proposed benefits of WGAN hold
for the task of image translation, comparing WGAN with
the standard Pix2Pix framework.

2. Background & Related Work
2.1. Pix2Pix [3]

Isola et al. introduced a unified framework known as
Pix2Pix to address the image-to-image translation problem
in its most general form. Given a image pairs (A, B), the
Pix2Pix framework can be trained to “translate” images A
into their corresponding form B, or vice versa. Pix2Pix uses
a U-Net architecture for the generator and a deep convolu-
tional discriminator. It is trained using conditional GAN
loss with the addition of an L1-distance term to ensure that
the generated B is close to the true B. As Pix2Pix serves as
the foundation of our architecture, we explore the technical
details of the architecture in greater detail in the Approach
section below.

2.2. Wasserstein GAN [1]

Arjovsky et al. explore an alternative to traditional
GAN:Ss that takes a different perspective on GAN learning
objective. Whereas the normal GAN loss function will at-
tempt to minimize the KL-divergence between generated
distribution and the true data distribution, the WGAN loss
formulation instead minimizes the Wasserstein distance be-
tween the two distributions. Arjovsky et al. claim that this



approach has several benefits:

e an interpretable loss metric that correlates with gener-
ator’s convergence and sample quality

e increased stability of the optimization process
e reduced mode collapse

The first point is especially helpful for allowing effective
hyperparameter tuning, which has been historically difficult
with GANSs.

3. Approach

3.1. Conditional Generative Adversarial Networks

GANSs are generative models that learn a mapping from
a random noise vector z to an output image y: G : z — y
[2]. In contrast, cGANs learn a mapping from an observed
image x and a random noise vector z to an output image
y: G : {z,z} — y [4, 3]. The objective of the genera-
tor GG is to produce outputs that are indistinguishable from
“real” images to an adversarial discriminator D. G and D
are trained simultaneously until G is able to successfully
fool the D — that is, D is unable to distinguish real images
from generated images with probability greater than 0.5.

The cGAN objective can be expressed as:

LcGAN (G, D) = Em,ywpdata(m,y) [1Og D(JE, Z/)]"’
EIdiata(m)VZNPZ (Z) [log(l - D(I7 G(LE, Z))]

Note that we want D to output high probability for real
images log D(z,y) and low probability for fake images
log(1 — D(z,G(z,z)). We compare the cGAN objective
to the vanilla GAN objective, in which G and D do not di-
rectly observe z:

Lean(G, D) = Eypyara(wy) log D(y)]+
By npaata(@),zmps (2) [log(1 — D(G(z, 2))].

In addition to the L.gan, prior research [5] that has
found benefit to include more traditional loss functions such
as L1 or L2 distance between the generated image and the
ground truth output image. In this scheme we only alter G
in the sense that it now must not only fool the discriminator,
but also produce outputs that are close to the ground truth:

L11(G) = Ez ympaara @), 2~p- () |1y — G2, 2)||1],
Liotai(G, D) = Legan (G, D) + AL (G).

This method is commonly referred to as Pix2Pix, al-
though in the Pix2Pix framework the random noise vector
z is not necessarily included as input to the generator as in
general conditional GANSs.
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Figure 1. A visualization of the full image translation architecture.
Image A is fed into the generator network, a “U-net” architecture
to produce the Fake B. During training, the pairs (A, True B) and
(A, Fake B) are passed to the discriminator network, a deep CNN.
For WGAN, the discriminator outputs a real-valued score rather
than a probability.

3.2. Wasserstein GAN

The key difference in WGAN:S is a differing loss function
that shifts the objective from minimizing KL-divergence to
Wasserstein distance between the generated and true distri-
butions. In WGAN:Ss, the discriminator is often referred to as
a “critic” — instead of outputting a probability of the sample
being real or fake, it instead outputs an unbounded score of
how real the sample is (the name is inspired by the concept
of actor critics from reinforcement learning). Omitting the
L1 loss, the WGAN loss can be expressed as:

Lwcan(G) = —Egpnp, () [D(2)]
Lwgan(D) = Epnp, (2)[D(T)] — Egnp, (o) [D(2)]

This has the effect of minimizing the Wasserstein dis-
tance between probability distributions p, and p,..

3.3. Network Architecture

See Figure 1 for a visual overview of the image transla-
tion architecture.

3.3.1 Generator: U-Net [3]

Our generator network consists of a U-Net encoder-decoder
architecture. The U-Net is a standard deep convolu-
tional encoder-decoder network with the addition of “skip”
connections. Both the encoder and decoder components
have L = 8 layers, and the output of layer 7 in the
encoder is concatenated (or ‘“connected”) with the out-
put of layer L — 7 in the decoder. Encoder layers
contain LReLU—CONV—BN, while decoder layers are
DECONV—BN(—DROPOUT). The output is an image of
the same spatial dimensions as the input image but with the
number of channels corresponding to the output representa-
tion.



Figure 2. Example image pairs from the CMP Facades dataset.
On the left we have images of building facade, and on the right
we have the corresponding hand-labelled segmentation of different
components of the facade. There are 12 classes specified in the
original report [5]: facade, molding, cornice, pillar, window, door,
sill, blind, balcony, shop, deco, and background.

3.3.2 Discriminator: Deep CNN

We utilize a five-layer deep CNN as the discriminator. As
input to our discriminator, we concatenate depth-wise the
input image x with either the real output image (for real
examples) or the generated image y (for generated exam-
ples). The discriminator is a fairly standard CNN with
CONV—BN—LReLU layers and the output being a sin-
gle sigmoid neuron predicting if the input image pair is real
or fake.

4. Experiments
4.1. Dataset

For the image-to-image translation problem, the general
structure of the training data are input and output pairs of
images. Each corresponding input and output image repre-
sents the same scene in the desired representation (e.g. an
input image might represent an edge map of a particular im-
age and the output image the full RGB pixel tensor).

We make use of the CMP Facades dataset, which include
building facade images assembled at the Center for Machine
Perception, including 606 rectified images of facades from
various sources that have been manually annotated. The
facades are from different a number of different cities and
include varying architectural styles. We select 400 images
for the training set and hold out 100 images for each of the
validation and test sets. See Figure 2 for example image
pairs from the dataset.

4.2. Model Details

We utilize Pix2Pix as a baseline and implement the
WGAN loss and training algorithm atop it.

4.2.1 Pix2Pix

We train the Pix2Pix framework described above for 100
epochs using an Adam optimizer with a high learning rate
(0.001). In contrast to the original Pix2Pix framework, we
make two generator updates for each discriminator update.
For all other hyperparameters such as the L1 loss weight,
we use the values mentioned in the original Pix2Pix paper.
The wall-time for training was roughly 7 hours.

4.2.2 WGAN-Pix2Pix

For our WGAN-Pix2Pix model we swap out the loss func-
tion of the generator and discriminator networks. We follow
in the footsteps of the original WGAN paper for selection
of hyperparameters. We update the critic network five times
for each generator update (or 25 times every 500 updates).
We use weight clipping to enforce the Lipschitz constraint
rather than use gradient penalty. We train WGAN-Pix2Pix
for 100 epochs using an RMSProp optimizer with a small
learning rate (0.00005). Because of the increased number of
updates per iteration, the wall-time for training was roughly
18 hours.

5. Results

5.1. Quantitative Results Summary

Model L2 Distance | VGG Cos-Sim
Random 40990.1 0.15610
Pix2Pix 25702.1 0.46944

WGAN-Pix2Pix 25889.5 0.43776

Figure 3. A summary of the average L2 distance and VGG cos-sim
on the test set. We see that both models significantly outperform
a naive random baseline, and Pix2Pix appears to have the slight
edge in both evaluation metrics over WGAN-Pix2Pix.

Deriving a quantitative measure for the quality of gener-
ated samples is a challenging open problem. Here we report
two measures, L2 distance and VGG cosine similarity. 1.2
distance is defined to be the euclidean distance between the
two images true B and fake B, averaged over the samples in
the dataset. VGG cosine similarity is a measure that we also
report, under the intuition that similar images should pro-
duce similar feature vectors in deep CNNs. We pass both
the true B and fake B through a VGG16 network pretrained
on ImageNet, and extract the final feature vector before the
output layer. We report the average cosine similarity be-
tween the corresponding VGG feature vectors of the true B
and fake B. See Figure 3 for a comparison of the quantita-
tive results from Pix2Pix and WGAN-Pix2Pix.

We compare both models to a naive random baseline that
generates random images and random feature vectors. As
expected, both models significantly outperform the random



baseline under both metrics. Pix2Pix has the slight edge
in both metrics over WGAN-Pix2Pix after both models are
trained for 100 epochs.

5.2. Inspecting Generated Samples

It is worthwhile to compare the samples generated by
both models. In Figure 4 we present an array of generated
samples along with the true output.
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Figure 4. Samples generated from test set after both models were
trained for 100 epochs. The first column is the input to the model,
and the second column is the ground truth output.

Despite Pix2Pix having the slightly quantitative edge,
both models generate similar samples in terms of appear-
ance and quality. Both models do a good job of generating
fairly common components such as windows and balconies,
but struggle more with rarer and more varied components
like facades, moldings, or backgrounds. Empirically there
appears to be an averaging effect, where the regions gen-
erated appear to be nearly an average of those regions ob-
served in the training set. This is opposed to other GANs
such as BicycleGAN or cVAE-GAN that more nearly sam-
ple a particular output from the distribution rather than nec-
essarily generating an “average” sample. As described fur-
ther below, neither Pix2Pix nor WGAN-Pix2Pix is particu-
larly effective at generating diverse samples and these alter-
native GANs can be more helpful in this respect.

5.3. Challenges

A number of challenges make it difficult to produce high-
quality samples. Some of these are particular to the CMP
facades dataset, but others are relevant to image-translation
at large.

5.3.1 Sparse Images

Empirically, the quality of samples with fairly sparse se-
mantic input maps was generally very poor. Figure 5 shows
an example of the poor sample quality when this is the case.
This appears to be because the generator does not have a di-
rect sense of global consistency — that is, there is nothing to
drive the generator to produce a wall with a consistent pat-
tern, color, or texture. As a result we see seemingly random
patches throughout the wall which do not appear to be high
quality.
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Pix2Pix

Figure 5. Both Pix2Pix and WGAN-Pix2Pix struggle to fill in large
regions of background or wall with no notion of global consistency
across components or the image.

5.3.2 Warping and Occlusions

Another issue stems from the noise found in the CMP fa-
cades dataset. In particular, a number of images are warped
in order to bring the building facade parallel to the image
plane. We show an example of this issue in Figure 6. Be-
cause the semantic map has no notion of this unused back-
ground space, our GAN must deal with this as noise and
a misrepresentation of what backgrounds should look like.
This results in poor quality samples as our model attempts
to mimic this noise which is actually undesirable in the gen-
erated samples.

5.3.3 Sample Diversity

An issue shared by both Pix2Pix and WGAN-Pix2Pix is the
lack of sample diversity. By sample diversity we refer to
the diversity in appearance of generated samples for a par-
ticular input. In traditional conditional GAN settings, this
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Figure 6. An illustration of how warped images in our dataset re-
sult lead to poor quality samples. The grey background region is
noise that is undesirable in generated samples.

randomness is governed by the random noise input vector
z. With Pix2Pix, the generated image is only a function of
the input image. Other GAN architectures such as Bicy-
cleGAN and cVAE-GAN address this issue and have been
shown empirically to produce a greater diversity of samples

[6].

6. Conclusion

From the experiments carried out in this project, it is not
clear that WGAN-Pix2Pix is a better option than vanilla
Pix2Pix, despite the proposed benefits of the WGAN loss
and optimization process. In fact, Pix2Pix appears to have
a slight edge quantitatively and qualitatively after the same
number of training epochs. Additionally, WGAN-Pix2Pix
took roughly three times as long to complete the same num-
ber of training epochs and arrive at a comparable quality
level as Pix2Pix. With these drawbacks in mind, adopt-
ing WGAN for image-to-image translation may not be a
promising avenue. We should note that this should not be
considered conclusive evidence as the significant training
times and limited access to computing resources limited our
ability to perform a complete hyperparameter search. How-
ever, a number of competing GAN architectures have been
shown empirically to produce higher quality samples and
with increased sample diversity.

Future work in the realm of image-to-image translation
might involve experimenting with modifications to the loss
function (such as the L1 loss term) to encourage higher
quality output samples. In addition, further work is needed

to determine meaningful quantitative evaluation metrics for
image generation tasks in general. In this paper report one
new metric, VGG cosine similarity, that is well-suited for
this task. A more rigorous analysis regarding the effective-
ness of this metric and its potential pitfalls is in order.
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