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Abstract

This paper proposes using a Wasserstein Generative Adversarial Network to en-
hance the performance of an existing neural network trained to perform audio super
resolution. Inspired by SRGAN [3], we utilize a pre-trained version of ASRNet,
as described by Kuleshov et al. [2], as a generator with a fully convolutional
discriminator model. We use an adapted loss function for the generator, summing a
content loss (MSE between the generator output and corresponding true audio sig-
nal) with the traditional adversarial loss. Our results show that our model performs
considerably better than a bicubic interpolation baseline in both signal-to-noise
ratio (SNR) and log spectral distance (LSD). In comparison to ASRNet, our model
shows stronger performance on the LSD metric and reduced SNR due to its attempt
to more bravely reconstruct higher frequencies of the low resolution signals. Both
ASRNet and our model achieve near identical performance on MUSHRA tests,
which incorporate human perception of the clarity of the produced audio signal,
and both significantly outperform the baseline.

1 Introduction

With the rise of personal assistant systems and audio data, auditory inputs toward technological
devices are becoming more and more prevalent; however, given the coarsity and variability of sounds
and subtle differences in recording devices, systems that take audio as input often have to deal with
poor quality audio and at times must re-confirm or repeatedly ask the same questions to interpret the
input. As such, a network that could take poor quality audio as input and enhance, or super-resolve, it
without requiring confirmation or repetition from the user could improve the experience of personal
assistants and other technologies that use audio data to inform actions.

Given this motivation, we propose to improve an existing model which performs bandwidth extension,
a specific form of audio super resolution, by reconstructing high-quality audio from a low-quality,
down-sampled version as described by [2]. Taking into account the success of SRGAN [3] which
utilizes a Generative Adversarial Network (GAN) to improve an existing model for Image Super
Resolution, we propose a modified Wasserstein GAN architecture to enhance a model for audio
super-resolution, ASRNet, introduced by [2]. By coupling a modified version of ASRNet as the
generator with a deep convolutional discriminator, our ASRWGAN’s results show promise for using
GANSs to augment current methods of audio super resolution.

2 Related work

Our work draws inspiration from a variety of deep learning approaches both for audio and non-audio
related applications. Fundamentally, as aforementioned, the primary goal of our project is to improve
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on the performance of an existing deep residual network (ASRNet) for audio super-resolution.
Proposed by [2], ASRNet draws inspiration from previous research on image super-resolution and is
modeled as a deep convolutional neural network with residual skip connections. ASRNet has been
shown to greatly outperform traditional interpolation techniques and provides a promising, real-time
network architecture for bandwidth extension (audio super resolution).

We propose a model to further improve the performance of ASRNet by incorporating the benefits of
Generative Adversarial Networks. As noted by [2], the task of audio super-resolution greatly mirrors
that of image super-resolution. Therefore, our proposed model and methods closely relate to those
presented in SRGAN [3], a GAN for image super resolution shown to outperform previous state of
the art architectures for super-resolving images at large scaling factors.

In developing our GAN architecture, we also draw inspiration from the implementation of Wave-
GAN[1]. WaveGAN explores the problem of audio synthesis using fully convolutional architectures
(to process audio signals) as opposed to using RNNs which are more closely associated with time-
series modelling. WaveGAN’s performance demonstrates the potential for applying convolutional
models to one dimensional time series data, which is an approach we further pursue here.

3 Dataset and Features

The data we use comes from the CSTR VCTK Corpus provided by the Center for Speech and
Technology Research [5]. This dataset includes speech data from 109 native English speakers reciting
around 400 English sentences each, although we are only training on data from a single speaker
for the sake of efficiency and due to compute time limitations. As an aside, we note that in future
applications, we can foresee audio super-resolution models specifically trained for individual speakers
in services such as Skype or Alexa. The data is in the format of WAV files, which we convert to a
numpy array using Python’s librosa library with a fixed sampling rate of 16,000. We represent an
audio signal from the WAV files as a function f(¢) : [0, 7] — R, where f(¢) is the amplitude at ¢ and
T is the length of the signal. To process the continuous signal as an input, we must discretize f(¢)
1 2 RT

into a vector z(t) : [&, &, -+ ), Where R is the sampling rate of the input in Hz. For this audio

super-resolution task, we consider R to be the resolution of the input x.

In order to standardize input length, we sample half second patches from recordings in the dataset,
resulting in vectors of shape (8192, 1) after preprocessing. We then shuffle the vectors randomly and
perform the following train/val split:

Train: 3328 examples, Validation: 500 examples

We pre-process each high resolution example by using a Chebyshev low-pass filter to decimate the
initial signal into a low resolution equivalent, which we provide as input for our generator network.
As a baseline for reconstruction we apply bi-cubic interpolation.

4 Methods and Final Model

Shown in Figure 1, our proposed model draws inspiration from three main sources: SRGAN, Wave-
GAN, and ASRNet [1][2][3]. Our general approach follow closely the methodology proposed in
SRGAN, which includes the use of a pre-trained generator network (ASRNet) to avoid undesired
local minima and the incorporation of a content loss component into the generator loss to enhance
performance by providing domain knowledge about the actual task at hand (super resolution). For
the individual components of the GAN architecture (generator and discriminator) we use modified
versions of ASRNet and the WaveGAN discriminator respectively. We choose the WaveGan discrimi-
nator specifically because of its demonstrated performance on audio time series data, which largely
relates to the success of long 1D convolutional filters in capturing the periodic nature of sound.

During our architecture search we focused mainly on two types of GAN, namely the Vanilla GAN
and a modified Wasserstein GAN (WGAN) [4]. Our initial implementation was a Vanilla GAN
employing traditional GAN training techniques, such as the use of the non-saturating cost function,
and the Leaky RELU non-linearity (as described in CS230 lecture) among others. However, this
model exhibited mode collapse, exploding gradients, and varying losses whilst training and as such
we turned to the WGAN for greater training stability.
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Figure 1: Final ASRWGAN Architecture with tuned hyperparameters

The WGAN adapts the Vanilla GAN by re-defining the loss function, incorporating weight clipping,
reducing the learning rate, and using a non-momentum based optimizer (RMS Prop). As mentioned
in [4], these changes serve to allow more reliable gradients to back propagate to the generator, whilst
keeping parameter values small in order to prevent issues like mode collapse.

Modified Loss functions:
DiscriminatorLoss = mazpEg~p, [D(x)] — E.~p, [D(G(2))] 1

Following the WGAN training algorithm outlined in [4], the discriminator is no longer trained to
identify real and predicted examples, but now trains to compute the Wasserstein distance.

1
GeneratorLoss = E||a: — G(2)|[3 + MmazgEsnp. [D(G(2))] )

We modify the generator loss proposed in [4] to incorporate a content loss in addition to the traditional
adversarial loss due to the success of a similar approach in [3]. We use MSE (mean squared error)
between predicted and true examples to provide domain knowledge about the actual task goal
(super resolution) and an additional hyper-parameter \ to balance the content and adversarial loss.
Specifically, we include A to control our model’s emphasis on optimizing for the content loss.

5 Results and Discussion

Metrics: We use signal to noise ratio and log spectral distance as suggested metrics per Kuleshov et
al. [2]. Given a target signal y and a reconstruction x, the SNR and LSD are defined in equations (3)
and (4) respectively, where X and X are the log-spectral power magnitudes of x and y, which are
defined as X = log|S|?, where S is the short-time Fourier transform of the signal, and [, k are the
index frames and frequencies, respectively.
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Figure 2: Example spectograms from various reconstruction methods
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Figure 3: Discriminator and generator loss curves with the respective loss on the y-axis and mini-batch
iteration number on the x-axis

Evaluation: Seen in Figure 2., compared to the baseline bicubic interpolation, or spline, reconstruc-
tion, our ASRWGAN reconstruction shows significant improvement in resolving higher frequencies.
Relative to the ASRNet, our ASRWGAN still recovers more of the higher frequency, but displays
some extraneous noise that is not present in the original high-res signal, which can be addressed by
preserving more of the pre-trained generator model.

From the objective metrics in Table 1 and 2, we see a slight decrease of approximately 1-2 dB in
SNR, but an improvement (reduction) in LSD. The LSD metric rewards resolving higher frequencies
more than the SNR metric [2]. After closer examination of saved weights over epochs 1-5, the SNR
drops significantly to ~ 5, which suggests a diminishing benefit of leveraging a pre-trained network,
likely due to a performance gap between our discriminator and generator; however, we see a quick
recovery and improvement upon baseline performance over as few as 40 epochs. Thus, although
we seem to introduce more noise compared the the ASRNet generator, we recover more of the high
frequencies as a tradeoff.



|| Objective Metrics || Spline H ASRNet || ASRWGAN ||

Signal to Noise Ratio 14.8 17.1 15.7
Log Spectral Distance 8.2 3.6 33

Table 1: Objective evaluation of audio super-resolution methods at an upscaling ratio of 4

|| MUSHRA H Sample 1 H Sample 2 || Sample 3 || Average ||

ASRWGAN 70 61 73 68
ASRNet 67 63 5 68.3
Spline 42 34 36 37.3

Table 2: Average MUSHRA user study scores for each audio sample

After adding weight and gradient clipping and transitioning to a WGAN, we avoid mode collapse and
see improved stability in training as shown by our loss curves in Figure 3. We can see the generator
loss steadily decreases while the discriminator continues to be updated over successive iterations.

Suggested by the work of Kuleshov et al. [2], we then reaffirmed our objective metrics through
asking 10 classically trained musicians to rate the general quality of reconstruction using a MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor) test. We randomly selected three audio
samples from the VCTK single speaker dataset, downsampled the samples, and reconstructed the
samples using a bicubic spline interpolation, ASRNet, and our ASRWGAN. We then asked each
subject to rate each sample on a scale of O (terrible) to 100 (perfect). The results of this experiment
are seen in Table 2., where we see a significantly higher rating for our ASRWGAN reconstruction
compared to the spline, but a less noticeable difference between ASRNet’s and ASRWGAN’s
reconstructions.

6 Conclusion/Future Work

In conclusion, we introduced a new deep architecture for audio super resolution. Our approach is
novel in that it combines recent promising work from SRGAN, WaveGan and ASRNet [1][2][3].
Empirical evaluation shows improved performance compared to more traditional methods, especially
for the high-frequency components of the audio signal. A human subject evaluation also rated the
final results superior compared to traditional methods.

We experimented with both a Vanilla GAN and Wasserstein GAN (WGAN) for our final architecture.
We settled on WGAN, which tended to suit our problem best due to the smaller learning rate, modified
loss function and addition of weight and gradient clipping which improved training stability.

Our strongest model, entitled ASRWGAN, performs considerably stronger than the traditional bicubic
interpolation methods in both signal-to-noise ratio (SNR) and log spectral distance (LSD) whilst
showing stronger performance on the LSD metric and reduced SNR when compared to ASRNet.
We argue these results are consistent with the observation that our model attempts to reconstruct the
highest frequencies of the input audio signal, which is arguably the most challenging part for audio
super resolution. The model does introduce some noise in the form of discontinuities to the predicted
output signal. Qualitatively, our MUSHRA experiments indicate comparable output signal clarity
with ASRNet and far superior clarity than our baseline model.

We hypothesize that the structure of the ASRWGAN, in particular the initial performance gap between
the discriminator and generator, causes ASRWGAN to not be able to fully take advantage of the
initial pre-trained state of the generator. In light of this, our first action for future work is to make our
discriminator more expressive through the introduction of skip connections and residual units and to
tune the discriminator-to-generator training ratio. Additionally, we intend to experiment with the loss
function on the generator, in particular the content loss, in order to better reflect our eventual goal of
optimizing performance for the human ear. Given more compute time, a natural extension would be
to train our model on multiple speakers in the VCTK data set and perform a more thorough hyper
parameter search for the weight clipping bounds.
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9 Code
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