Predicting success of global terrorist
activities

TRISHA JANI

Abstract

The purpose of this project is to predict the success of a terrorist attack given a set of input features. The
Global Terrorism Database (GTD) is an open-source database including information on over 170,000 terrorist
events around the world from 1970 through 2016. The National Consortium for the Study of Terrorism
and Responses to Terrorism (START) has maintained the database and created several visualizations and
performed statistical analysis with the data. However, the data has not extensively been used for prediction
purposes. In this project, we use the GTD to predict the success of a terrorist attack using deep learning
techniques. We explore three different fully connected neural network architectures, and find that our
strongest model achieves over 91% accuracy. Our results suggest that it is indeed possible to train effective
neural networks to predict the success of a terrorist attack.

I. INTRODUCTION & MOTIVATIONS

Since the turn of the century, we have seen an
uptick in the number of terrorist activities on a
global scale, as seen in Figure 1. The aim of
this project is to better understand terrorist
activities around the world and use deep
learning techniques to predict the success of
attacks.

Figure 1: There has been a rise in the number of terrorist
attacks since the turn of the century.

For the project, we use the Global Terrorism
Database, an open-source database including
information on terrorist attacks around the
world from 1970 through 2016. The database
describes over 170,000 incidents, both domestic
and international, via a set of over 130 de-
scriptive features. The database is maintained
by the National Consortium for the Study
of Terrorism and Responses to Terrorism
(START), which has its headquarters at the
University of Maryland.

While there exist a lot of visualizations and
statistical analysis based off this dataset, no pre-
dictive analysis via machine learning or deep
learning have been applied to better under-
stand the data. For this reason, we thought it
would be an interesting break this barrier and
attack this problem with deep learning.

II. DATASET & FEATURES

i. Global Terrorism Database

The initial uncleaned dataset consists of 170,350
terrorist incidents described by a list of 135 fea-
tures. These features are both numerical and
categorical and are divided into 8 basic groups:
event data, incident information, incident loca-
tion, attack information, weapon information,
target/victim information, perpetrator infor-
mation, and casualties/consequences. Most
importantly, each incident is also labeled as
successful or unsuccessful. We build a model
to try to predict the success of an attack given
a subset of these features.

ii. Exploratory data analysis

Before building our model, we decided to
first perform basic exploratory data analysis
to gain a high level understanding of the our
features. We highlight a few of our finding
and plots below.

Number Of Terrorist Activities By Region

nnnnn

.
> & &
Lo &£ & ¥ K
S FE o S &
* & &

& &
e & w

&
Region

Figure 2: The number of terrorist attacks differs by re-
gion.

Attacking Methods by Terrorists

Attack Type

Figure 3: Terrorist prefer bombing and explosions when
attacking.

We first looked at the geographical spread
of attacks and note that region is an im-
portant factor in determining the number
of terrorist attacks. As Figure 2 shows,
there are significantly more attacks in the
Middle East, North Africa, South Asia, and
South America than other regions in the world.

Then, we also examined the most common
methods of attack. From Figure 3, We see that
bombings and explosions are the preferred
method of attack, while unarmed assault,
barricades, and hijacking are less common.

By performing this exploratory data
analysis, we gained a better understanding
of the dataset and decided to build our
model using a set of the following 9 features:
country, region, attack type, target
type, weapon type, group name, suicide,
multiple, hostage. Although we could
have used more features, these 9 are a good

representation of information that would
be known in a real-world scenario. Since
these features were categorical, we used a
one-hot representation of each of them in our
neural network model, where each input is of
dimension 3512.

After cleaning our dataset, we had a total
of 151,254 incidents. We reserved 10% for our
test set (15,126 examples). Of the remaining
136,128 examples, we set aside 10% for our
development set (13,613 examples), meaning
the remaining 122,515 examples were used for
training.

We note that we have a class imbalance
within our dataset. In particular, of our 151,254,
nearly 90% have class label 1" (successful at-
tack). For this reason, we are careful to ensure
that roughly 90% of our training, development,
and test sets each also have examples of class
1.

III. MEeTHODS

i. Baseline Model

Because we have a significant class imbalance
in our data, our baseline model is simply a
predictor that outputs "1’. This simple model
achieves nearly 90% accuracy on the train, dev,
and test sets. Therefore, moving forward with
out more complex neural network models, we
want to ensure that we have at least 90% accu-
racy. If not, our very simply model that always
predicts 1" does a better job, and there is no
need to use such a complex and computation-
ally expensive model.

ii. Fully Connected NN with two hid-
den layers

Our first neural network architecture was a
fully connected network with 2 hidden layers
(Figure 4). We wanted to see how a relatively
small network would perform on our data, and
therefore chose to make our first hidden layer
have 12 units and our second layer have 6 units.

Since we are trying to solve a binary clas-
sification problem, we evaluated our model
on the basis of binary cross-entropy loss, de-
fined as follows: Loss = = YN, [y;log(9;) +
(1 —y;)log(1 —7;)] where N is the number of
attacks, y; denotes the success of an attack (0 is
unsuccessful and 1 if successful), and 7; is the
predicted label for an attack (0 is unsuccessful
and 1 if successful).

Input layer Hidden layer 1 Hidden layer 2

3512 units 12 units 6 units
O @ @
o o e
[) [] X () j Output
O ® O

Figure 4: Our first model has an input layers, 2 hidden
layers, and an output layer

We had to tune several hyperparameters to
get reasonable model performance. We con-
figured our model with the Adam optimizer
(B1 = 0.9, B2 = 0.999) and a mini-batch size of
50. After adjusting our learning rate and acti-
vation functions, we settled on &« = 0.001 and
opted to use ReLU activation for our hidden
layers and sigmoid activation for our output
layer.

After training for 50 epochs (Figure 5), we
had a model that achieved 92.34% accuracy on
our training set. However, the dev set accuracy
was 90.58%, which suggests that our model
overfit to our training data. For our upcoming
models, we decided it would be necessary to
implement regularization to prevent overfit.

Model Accuracy
0922 wm Train
) i i
0918
0916
0914
0912
0910
0.908

0.906

0 10 20 30 40 50
Epoch

Figure 5: Training Model 1 for 50 epochs

iii. Fully Connected NN with three
hidden layers

Our next neural network model was a fully
connected architecture with 3 hidden layers, as
shown in Figure 6. Our first hidden layer had
100 units, second hidden layer had 50 units,
and third hidden layer had 20. Again, we used
the ReLU activation for our hidden layers and
sigmoid activation for our output layer. Our
final model used the Adam optimizer with a
learning rate & = 0.01.

Input layer Hiddenlayer1 ~ Hiddenlayer2 Hidden layer3
3512 units 100 units 50 units 20 units

] @] ©
° o o /e
[] @ o [] Output
@ @ @ @

Figure 6: Our second model has an input layers, 3 hid-
den layers, and an output layer

Since our data has a class imbalance, we
adjusted our loss to penalize false positives
by using a cross weighted loss with param-
eter o that we manually define: Loss =
5 L [Byilog (9:) + (1—6) (1 — yi)log (1 1:))-
Since we have a 9:1 class imbalance, we chose
0 = 0.1 This further penalizes false positive
errors.

To combat the problem of overfitting, we
decided to implement dropout regularization.
After rounds of tuning dropout fractions rates

for each layer, we found that the rates (0.5, 0.2,
0.2) worked well.

After 50 epochs of training (Figure 7), our
model achieved 91.98% accuracy on our train-
ing set and 91.18% accuracy on the dev set.
This suggests that our model did not overfit to
our training data and generalized pretty well.

Model Accuracy

0918 ™= Train
=== Dev

0916
0914
0912
0910
0.908

0.906

0 10 20 30 40 50
Epoch

Figure 7: Training Model 2 for 50 epochs

iv. Fully Connected NN with four hid-
den layers

Finally, we wanted to test out an even larger
fully connected neural network to see if our
performance would increase. Our last neural
network model was a fully connected architec-
ture with 4 hidden layers, as shown in Figure
8. Our first hidden layer had 50 units, sec-
ond hidden layer had 20 units, third hidden
layer had 10 units, and fourth layer had 5 units.
Again, we used the ReLU activation for our
hidden layers and sigmoid activation for our
output layer. Our final model used the Adam
optimizer with a learning rate « = 0.01.

Given the strong performance of our
weighted loss function, we decided to use it
again for this model. Again, we used 6 = 0.10.
Similarly, since we saw the benefit of dropout
regularization to preventing overfit, we de-
cided to also implement dropout for this model.
After rounds of tuning dropout fractions rates
for each layer, we found that the rates (0.5, 0.2,
0.2, 0.2) worked well.

After 50 epochs of training (Figure 9), our
model achieved 90.83% accuracy on our train-

ing set and 90.54% accuracy on the dev set. We
notice that this model has lower performance
the both previous models on the training set.
However, the gap between the training set ac-
curacy and the dev set accuracy is pretty small,
suggesting that our model did not overfit to
our training data and generalized pretty well.
In our to better improve this model, we would
likely need more data or more features to in-
crease training accuracy.

Inputlayer Hidden layer 1 Hidden layer2 Hidden layer3 Hidden layer 4
3512 units 50 units 20 units 10 units 5 units

® @ @ [] @
[+] [l ® ® @
@ @ [@ ® ® ouw
® ([([[[

Figure 8: Our first model has an input layers, 4 hidden
layers, and an output layer

Model Accuracy

0912 === Train

== Dev
0911
0910
0909
0908
0907
0906

0.905
0 10 20 30 40 50
Epoch

Figure 9: Training Model 3 for 50 epochs

IV. ConNcrusIOoNS

Table 1 shows the performance of our three
models on the training, dev, and test sets. To
summarize, we see that Model 1, the simplest
neural network with the least parameters, has
the lowest training error, but does not gener-
alize that well. When we increase our model
complexity, adjust our loss function, and add
regularization to build Model 2, we see it has
the highest performance on the test set. This
means the model generalizes well. Finally,
Model 3, our most complex model, general-

izes well but has the lowest accuracy on the
training set.

Table 1: Comparing model accuracy

Model type Train = Dev Test

Model 1 92.34% 90.58% 90.85%
Model 2 91.98% 91.18% 91.17%
Model 3 90.83% 90.54% 90.69 %

Table 2 compares the performance of the
three models on statistical tests on the test set.
Since our classes are imbalanced, we specifi-
cally look at the recision, recall, and F1 scores.
All three models have a high recall, which
means they have a low false negative rate.
All three models have pretty high precision
(greater than 0.9), which means the false posi-
tive rate is pretty low. However, the precision
is lower than the recall, which suggests that the
models can still be improved to reduce the false
positive rate. All three models have similar F1
scores.

Table 2: Statistical Performance on test set

Model type Precision Recall F1 Score
Model 1 0.921 0.980 0.950
Model 2 0.916 0.994 0.953
Model 3 0.905 0.999 0.950

There are several avenues for future work
on this problem. First, we could explore with
even deeper architectures to see if prediction
accuracy increases. Alongside that, we could
also try more regularization techniques (such
as adjusting the cost function) and spend
more time further tuning dropout fraction
rate parameters. Next, we could also trying
including more features from the original
dataset. We originally chose to build a model
with 9 hand chosen features because they are
interpretable and actionable in a real-world
scenario. However, it would be interesting
to see how much the model improves by
introducing additional features.

Lastly, we note that we can further decrease
our false positive rate by constructing a more

"real-world" loss function that takes into ac-
count the social, financial, and even psycholog-
ical loss incurred by a false alarm for a terrorist
attack. This data may be hard to come by, but
if any estimates exist, it can be used to form
a loss function that better mirrors real world
circumstances.

REFERENCES

[1] National Consortium for the Study
of Terrorism and Responses to Ter-
rorism (START). (2017). Global Terror-
ism Database Codebook. Retrieved from
https:/ /www.start.umd.edu/gtd

[2] Prabhakar Misra, Raul Garcia-Sanchez
and Daniel Casimir. "Development and
Optimization of Machine Learning Algo-
rithms and Models of Relevance to START
Databases," Report to the Office of Uni-
versity Programs, Science and Technology
Directorate, U.S. Department of Home-
land Security. College Park, MD: START,
2016.

[3] Martin Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard,
Rafal Jozefowicz, Yangqing Jia, Lukasz
Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Mike Schuster, Ra-
jat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaogiang Zheng.
TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software
available from tensorflow.org.

