CS230 Project Report:
Crypto Exchange Price Prediction using Limit Order Book

Ben Gilboa
(SUID# - 06278930)

Tamal Biswas
(SUID# — 05107984)

Ashwin Selka Padmanabhan
(SUID# — 06246676)

Stanford University
Spring 2018
GitHub: https://github.com/gilboab/CS230_Project

Abstract

In this project we develop models for prediction of future
Bitcoin price trends using limit order book data as inputs.

1. Introduction

High frequency trading or Algo trading is gaining
significant momentum in stock exchanges. In today’s
market, a sizable portion of the daily traded volume is
done by specialized companies using those techniques. In
the elaborated stock market, it is almost impossible for
individuals not using heavy machinery and very fast
access to data to gain any advantage, as margins and
arbitrages are closed in fraction of a second.

The rise of the crypto market and exchanges might reveal
opportunities that are long gone in the stock market for
small scale algorithmic trading.

In this project we explore and develop a deep machine
learning model that predicts the future price of digital
asset such as bitcoin. We developed RNN (Recurrent
Neural Network) that predicts the future price trend of a
tradable and volatile digital asset such as the Bitcoin. The
input to the model will be a limit order book data along
with other historical indicators for demand and supply to
develop our predictor. Although we chose a digital asset
for this project, the principals and methods we develop are
transferable to any asset that is tradable in an exchange.

2. Prior work

Prior work in this area can be split into two categories
namely Mathematical models and the Deep Learning
models. Tian Guo and Nino Antulov-Fantulin [1] try to
predict the short term bitcoin price fluctuations
mathematically using their own custom model derived
from the volatility of the order book which is more reliable
than the related time series and moving average models
like ARIMA, ARIMAX etc. Huisu Jang and Jaewook Lee
[2] use information from Blockchain transaction data and
try proving that a Bayesian neural network performs well
in predicting the Bitcoin price time series associated with
its high volatility. Muhammad J Amjad and Devarat Shah
[3] improve on the current time series prediction

algorithms. More specifically, they develop a framework
for time series analysis and then present a scalable real
time algorithm with an intent to predict the next state of
Bitcoin with high accuracy. Justin A Srignano [5]
developed a new Neural Network architecture in 2015 for
modeling spatial distributions of the limit order books.
While this work was mostly around regular stocks and not
the highly volatile crypto currencies. The paper presents a
good motivational factor for combining Neural Networks
and Limit Order books for future price predictions and
fluctuations.

3. Dataset Characteristics and Acquisition

The data that is primarily used in for our predictor is the
data from limit order book.

3.1. Limit order book

The limit order book captures all pending orders of bids
and asks. Graphical presentation (figure 1) shows an
accumulative view of a single limit order book snapshot.
The limit order book snapshot represents the demand and
supply in the market in a certain point in time. In the figure,
it is clearly seen that the demand is “stronger”. There are
much more buyers who are willing to buy the asset for a
price that is lower by 3% from last price than sellers who
are willing to sell in a price that is higher by 3% than the
last price. This might indicate that the price is about to
increase. We look at the 500 highest bid orders and the 500
lowest ask orders in every snapshot of the order book.

Limit Order Book Snapshot

400 A

w
G
=}

w
=3
o

N
o
=]

-
7]
o

bid

Accumulative Quantity
~
(=3
o

=
15}
=3

5
S

ask

0

spread
7600 7800 8000 8200 8400 8600
Asset Price

Figure 1: Limit Order Book Snapshot

3.2. Bitcoin historical price

For each limit order book sample data point we look at
the corresponding bitcoin price. This is basically the “last”
price of a transaction at the same time when the order book
was sampled. This data is used to generate the classifier for
price increase or decrease. Consider a point in time ‘ty’ that
corresponds to sample in our dataset “so’. By considering
certain number of examples (s.1, S-2, ..., S-n) We get historical
feature to the training set. For predicting future trend at time
tfure WE compare the Bitcoin price at to and t-fuwre to label
a price increase or decrease.

Bitcoin price in the dataset

10000 A

9500 A

9000 -

Bitcoin Price

8500 -

8000 +

T T T T T T T
0 5000 10000 15000 20000 25000 30000
Sample number

Figure 2: Bitcoin Price throughput our samples

3.3. Data acquisition

We obtain the above data by sampling the Bittrex
exchange every 1 minute using the API it provides and
storing the data. We obtained so over 30,000 samples that
represent 3 weeks worth of trading data. The data is not
100% consecutive as sometimes the software crashes for
several reasons due to networking or related issues on the
Bittrex side

4. Initial model

As a starting point we use only one limit order meaning
that we predict a future change based on the current status
without looking at the history or consecutive trends. In fact,

HEH

we shuffle the samples and eliminate any timing notation.
Since every order in the book has 2 parameters (quantity

and price) we can’t use it as is. We apply a small
modification to the data to extract a training example. We
define “bins” of 10$ and we sum the quantities that relate
to each bin. From 500 bid orders we create 100 bins that
represent the last price down to last price minus 1000$. In
later phases we modified the 10$ bins to 0.1% bins. Figure
2 present a result of the binning process and a visual
representation of one training example that we feed to the
initial NN. It is easy to observe that this training example
corresponds to the one used in figure 1. After binning the
data, we end up with 200 features for every training
example.

For the labels we have the last Bitcoin price that
corresponds to every training example. We make it a
classification problem by comparing the next value of the
bitcoin (1 min into the future) to the current price. If the
price increased the label is °1” and if decreased or same it is
°0’. This classification is very naive and will not result in a
successful trading strategy but it is good simple
classification for initial design.

training set features (bins)

70 4

7000 7250 7500 7750 8000 8250 8500 8750 9000
Asset Price

Figure 3: sample of one training example after
structured in bins

4.1. Fully Connected Network Architecture

The objective of this initial phase is to find the correlation
and validate the data from the order book as valid
predictor. The architecture shown in figure 3 describes our
current initial network

We had originally attempted using lesser number of
layers and neurons and came up with the architecture in
Figure 3 after some fine tuning and hyperparameter
experimentation. More details below

Figure 4: NN Architecture

Initial Results

Our current architecture has 6 layers. We used about
21,000 training examples and shuffled them. Then we
defined the training / dev sets as 80%/20% split. For the
labels we compared bitcoin price 1min, 2min, 3min, Smin
and 10min into the future to the current price. After
adjusting the learning rate combined with Adam
optimization and Early stopping, we achieved
approximately 95% accuracy on the training set and
approximately 64% on the dev set. The 95% accuracy is
very encouraging result for us but the high variance is
clearly a concern. We tried to add L2 Regularization and
Dropout but it did not help to reduce variance. It only
increased the bias.

The conclusion we got from the FCN exercise is that
the architecture can’t predict better than 65% on the dev
set when learning for single order book sample and the
dataset that we have.

—— Training Set Accuracy A NN

—— Dev Set Accuracy

0.9

0.8

Accuracy

0.7 1

0.6

0 20 40 60 80 100
iterations (per 50)
Figure 5: Training vs Dev Accuracy with max dev
accuracy at around 3100 epochs

Figure 5 shows the accuracy associated with the final
numbers after tuning the hyper parameters. We see that
dev set accuracy does not reach more that 65%. These are
results validate the correlation between the order book and
the labels but they also tell us that the model is not good
enough. To get a better model we wanted to bring back the
sense of time to the samples and use RNNss for that.

5. RNN

To develop the best predictor for future Bitcoin price, we
tried different approaches and RNN architectures. We
used Tensorflow to develop our initial RNN models given
its high flexibility, portability, performance and other
advantages as explained in [6] .
The common theme among all the experiments below was
to play with the hyperparameters and the related objects
associated with the Network namely:

1. Learning Rate

2. Number of Time Steps

Number of hidden units

Number if iterations

Batch Size etc.

Static vs Dynamic RNN

Type of Cell (LSTM/GRU/Basic RNN etc.) etc.

S9N [P e 00

5.1. Input and output similar to the Fully connected
Network

In this experiment, we fed the limit order book input
directly into an LSTM network followed by a sigmoid
output prediction of an increase or a decrease The
rationale here was to see how the RNN performed
compared to a pure Fully Connected Network and its
effect on the accuracy. This network trained slower
compared to the raw non RNN network. From accuracy
standpoint, we were able to achieve similar or better
results on the training set but worse than expected
performance on the dev set.

y .] y
L 4 y W @
7 : 4 T

0 0 0 ¢
288 O
AAA A

Figure 6: RNN Architecture where Inputs and Outputs
are same as the Fully Connected Network

5.2. Input as Order book encoded with FC Network

In this experiment, we encoded the limit order book data
using a Fully Connected Network and fed the activations
from the last but one layer (layer before the sigmoid
activation in the original FC network) into the RNN. From
accuracy standpoint, we were not able to achieve a
remarkable increase, and this performed very similar to
the earlier RNN (5.1) where the order book was directly
fed as input

As part of these variations (5.1 and 5.2), in addition to
binning the quantity of bitcoins based on the distance from
the current price, we doubled the number of input features
by including the distance themselves. We believed that by
doing so, we will help the network predict better,
primarily because, while the bitcoin price can change by
several 100 or 1000 dollars over time, the difference
between the current price and the bid/ask will follow a
pattern. For example, if the price today is $8000, many or
most of the bid/ask orders would be closer to the
$7000/$8000/$9000 range rather than the $20000 range.
However, the neural network’s dev set accuracy did not
see any reasonable improvement

[Fis &
i o i)]

4 L 4 A 4 4
; ¢ s 3)

SIGMOID OUTPUTS
O + 0

]

ENCODER (FULLY CONNECTED NETWORK)

A A A A

Figure 7: RNN Architecture where Fully connected
network acting as encoder becomes RNN input

5.3. Single order book input split into time steps

In this experiment, we split the input into equal number of
parts and fed each part to a time step in the LSTM
network. For example, we spit the 200 feature inputs into
10 parts of 20 each and fed it to the LSTM network with
20 time steps. The rationale here was to follow a similar
pattern associated with examples from another domain
where an input image was split into rows and each row
was fed into an LSTM cell as a time step. Unfortunately,
we didn’t find any remarkable change in accuracy with
this approach

& -
2y h
&2 g
L] []

d o L
E: . E

SIGMOID OUTPUTS
. O 0

)

[}
L)
L 4

-@

Figure 8: RNN Architecture with Single Limit order
book spliced into multiple time steps

With the change to RNN architecture and experimentation,
we were able to achieve 95% plus accuracy on the training
set and the dev set accuracy improved to about 66% (a 3%
increase compared to the FC network)

5.4. Categorical Model

Prediction of binary label is the simplest way to establish
the correlation between the input dataset and the outcome
but it is not a useful indication for successful trading
algorithm.

We enhanced the output labels to 3 categories:

1. Increase by more than threshold percent

2. Decrease by more than threshold percent

3. Did not change by more than threshold percent
We created a signal with 4 dimensions so we can tune and
find the best option. One dimension is the threshold (0.1%,
0.2%, 0.3%, 0.4%, 0.5%), second dimension is the future
look ahead prediction (Imin, 2min, 3min, Smin, 10min),
other 2 dimensions are for the RNN time step (window
size) and the batch.
We used time step of 4 and divided the data set to groups
of 4 consecutive samples with overlap. Each input sample
to the time distributed network is 4 samples of 200
dimensions representing 4 consecutive order book
snapshots at 1 min intervals. For example, the first training
example represent time (t.3, t-o, t.1, to) and the second
example represent time (t.», t.1, to, ti) etc’. This way the
RNN gets the sense of time without the sense of artificial
grouping. For the output we used one value that represent
the trend of the bitcoin price for every sample. We only
issue one label for the entire unrolled RNN of 4 time steps.
This way, the model receive a sequence in time and the
single result of this sequence. To select the label, we tried
different options of look ahead times. Eventually, the best
results are achieved for 2 min look ahead prediction and
0.2% threshold change.

Order book data 1min, 2min, 3min, Smin, 10min Look Ahead

I B A .
| | o N
o0 0 [) []
L | |
11 [[
t3t+2 t-1 t0 t1 t2 t3 t5 t10 Time

Figure 9: Categorical Model input / output preparation

5.4.1 Categorical model architecture

The architecture that has produced the best results so far
has 3 convolutional layers (1 dimensional) connected to 2
layers of LSTM RNN with 256 hidden nodes each and one
softmax layer with 3 states for the output.

256

hidden N
nodes

256

hidden

nodes

Time distributed

Time distributed

CONV 1D 256 X 5 + Dropout

Figure 10: Categorical Model Architecture

Time distributed

The purpose of the convolutional layers is to smooth the
extract features from the spiky order book sample.

When we started to train this network and we checked the
labels for training and dev set we realized that the majority
of the outputs are within the threshold.

Increase No change | Decrease
Training Set 3126 16310 3060
Dev Set 278 1928 290

Table 1: 25,000 samples label distribution

With this type of distribution it is easy for the model to
achieve high accuracy percentage simply by predicting no
change. To overcome this problem we modified the
traditional loss function.

batch size

Loss = — output * log(prediction)

i

For outputs that are labeled as increase or decrease we
multiply by factor of 2. We tried different factors for that
and 2 came out to perform reasonable.

5.4.2 Categorical model results

So far, using the network described, we achieved 70%
accuracy for the training set and 67% accuracy for the dev
set.

Increase | No change | Decrease
Ground truth 1928 290
.Predlcted 247 17
increase

Predicted no
change
Predicted
decrease

10

Table 2: Dev set results for categorical model

Total samples in the dev sets is 278+1928+290=2496 and
the green cells are the one predicted correctly
87+1505+77=1660. 1660/2496=66.5%.

While these results do not seem as good as we initially
hoped, there are few things to note. If we consider the no
change label as kind of “don’t care” than the prediction
becomes much better. Meaning that for prediction of
increase, there are 25% of actual increase, 70% of no
change and only 5% of decrease.

5.4.3 Trading Simulation

To further evaluate the model we developed a trading
simulation on the dev set. The trading strategy is very
simple. We either hold Bitcoin or Dollars. Meaning that
every trade is using the entire amount that we simulate. If

prediction is ‘1 (increase) than but Bitcoin or hold
Bitcoin. If prediction is °-1” (decrease) sell bitcoin or hold
dollars. If prediction is ‘0’ (within thresholds) hold
position.

—— Bitcoin

104001 trading performance

10200 A

Value

10000 A

9800 +

9600

T T T T T T
0 500 1000 1500 2000 2500
samples

Figure 11: Trading Simulation
This simple simulation is zero trading cost model. It
means that it ignores commissions as well as bid-ask
spread. Under this model it proved itself profitable using
our machine learning predictor running on the dev set
gaining over 6% while Bitcoin itself gained 0%. We have
tested the same on different test set data and it consistently
outperforms the Bitcoin itself.

6. Conclusion

This project clearly demonstrated the correlation between
limit order book and the future price. Starting from fully
connected model of binary classification, continue to
RNNSs and concluding with categorical multiclass
classification, we built different models and tested their
performance on dev set. Although achieving over 70%
accuracy on dev set is hard and we could only get close to
that, the model that we have built on the categorical
classification is consistently outperforming the Bitcoin
itself under the zero trading cost model. Further work can
be to consider the trading costs and find a profitable
model.

7. References

[1] Tian Guo, NinoAntulov-Fantulin. Predicting short-
term Bitcoin price fluctuations from buy and sell orders

[2] Huisu Jang, Jaewook Lee. An Empirical Study on
Modeling and Prediction of Bitcoin prices with Bayesian
Neural Networks Based on Blockchain information

[3] Muhammad J Amjad, Devarat Shah. Trading
Bitcoinand Online Time Series Protection

[4] N.I. Indera, I.M.Yassinm A.Zabidi, Z.I.Rizman. Non-
Linear AutoRegressive with Exegeneous Input (NARX)
Bitcoin price prediction model using PSO-Optimized
parameters and moving average technical indicators

[5] Justin A Sirignano. Deep Learning for Limit Order
Books

[6] Tensorflow — Google’s artificial intelligence system
for large scale machine learning
https://www.softwebsolutions.com/resources/tensorflow-
googles-artificial-intelligence-system.html

