Classical Composer Identification on Interval
Features for CS230-Spring 2018

Andrew Davis
Department of Computer Science
Stanford University
daandre@stanford.edu

Abstract

This paper examines the ability of a neural network to classify Western Classical
composers given only information about a work’s musical intervals. For this paper,
five composers were chosen: Johann Sebastian Bach, Joseph Haydn, Ludwig van
Beethoven, Arcangelo Corelli, and Frédéric Chopin. The dataset was statistical
information about a given work’s interval profile that was extracted from MIDI
representations of musical works. This was fed into a three layer neural network
with a "softmax" classifier. The results showed that the neural network could
correctly identify with 83% accuracy. The results showed that Classical and
Baroque composers can be distinguished solely on the basis of how composers
treat musical intervals in their works.

1 Introduction

Identifying Classical composers in and of itself is not a problem that needs to be solved. The corpus
of work from these composers is finite and is known by most musicologists and scholars. The
trained musical ear is quite good at picking apart famous composers from other famous composers.
A more important question is what are the essential characteristics that make them distinct. Is it
types of instruments? Is it choice of melodic phrase? Is it harmonic motion? The answer is likely
a combination of many different characteristics. Music theorists and musicologists have theorized
different reasons as to the importance of specific features but these are qualitative assessments. Neural
networks can provide quantitative analysis of musical works and help buffer or detract from various
theories as to what defines a composer’s style.

To narrow the scope of the project, this paper examines the extent to which knowledge of a work’s
musical intervals aids our ability to identify composers. To rephrase, if simply given information
about a work’s interval structure, could a neural network sufficiently learn to distinguish major
Western Classical composers from each other?

To directly answer this question, a neural network was given seventeen statistical features about a
MIDI file of a composer’s work. Some examples of the seventeen features include the fraction of
perfect fifths and most common melodic interval. (For a complete list of features, please see section
3 on dataset and features). The output to the neural network was a softmax classifier for five classes.
In this project, five composers were selected. They are as follows: Johann Sebastian Bach, Joseph
Haydn, Ludwig van Beethoven, Arcangelo Corelli, and Frederic Chopin. The output predicts which
of the five composers was most likely to have written the work given the seventeen features provided
to the network.

CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

With the rise of Artificial Intelligence over the last few years, musicologists, theorists, and computer
scientists have begun to explore the relationship between neural networks and music. Common
approaches often investigate music information retrieval, algorithmic composition, and classification.
Since this paper explores classification, the related work section will focus primarily on this
subsection of research.

Instrument identification is a typical avenue of exploration. This area of classification often
deals with raw audio that undergoes significant preprocessing. Oftentimes, this involves using
Fast Fourier Transforms to create spectrograms of the audio files. In Han et. al’s paper "Deep
Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music,"
the authors convert polyphonic music into spectrograms whose image is then processed through a
convolutional neural network[1]. Others have used the raw audio as the basis for exploration in a
convolutional neural network and achieved similar results[2] but using an "end-to-end" approach.
In some instances, researchers have been even more involved in the feature extraction. In Babak
Toghiani-Rizi and Marcus Windmark’s "Musical Instrument Recognition Using Their Distinctive
Characteristics", the authors use various hands-on preprocessing to extract information about audio
attack and decay to ascertain an instrument in a monophonic setting (i.e., only one instrument
playing at a time).[3] This paper attempted to answer questions about the important of attack in
identifying an instrument and favored a hands-on approach to test it, similar to what this paper
seeks to do with musical intervals and composers. The aforementioned papers as well as Shelar
and Bhalke’s "Musical Instrument Recognition and Transcription using Neural Network"[4] seek
to address instrument identification in a polyphonic setting (i.e., multiple instruments playing at once).

In the field of composer identification, researchers have used probabilistic neural networks
and feedforward neural networks. In Kaliakatsos-Papakostas et al.’s "Musical Composer Identifi-
cation through Probabilistic and Feedforward Neural Networks," the authors found that "as the
similarity between two composers increases, the identification effectiveness between those two
decreases."[5] In 2015 in Herreman et al’s "Classification and Generation of Composer-Specific
Music Using Global Feature Models and Variable Neighborhood Search"”, the authors attempted
composer identification of three composers (Haydn, Beethoven, and Bach) using a small subset of
features extracted through the jSymbolic library[6][9]. This paper is most similar to Herreman’s
research which tested on three different models: RIPPER ruleset, C4.5 Decision tree, and logistic
regression. Logistic Regression was the best performer for their features and datasets at 81.7%. This
paper focuses on different features and expands on the number of classification and attempts to solve
a similar problem with feedforward neural networks.

3 Dataset and Features

The dataset was obtained through the Kern Scores library at the Center Computer Assisted Research
in the Humanities at Stanford University[10]. Kern contains MIDI files of works from composers
primarily from the 16th to the 18th century. The composers chosen for this research were Bach,
Beethoven, Corelli, Haydn, and Chopin. In sum, 1341 total examples were collected (Bach: 563,
Beethoven: 188, Chopin: 92, Corelli: 245, Haydn: 253) and 150 each were randomly selected for the
development set and training set. Each MIDI file was preprocessed to extract seventeen features
relating to music intervals using the open source tool jSymbolic[9].

The seventeen features are as follows: most common melodic interval, mean melodic inter-
val, number of common melodic intervals, distance between most prevalent melodic interval,
prevalence of most common melodic interval, relative prevalence of most common melodic intervals,
chromatic motion, stepwise motion, melodic thirds, melodic perfect fourths, melodic tritones,
melodic perfect fifths, melodic sixths, melodic sevenths, melodic octaves, melodic large intervals,
and minor major melodic third ratio. Most of these features are evaluated on a percentage basis. For
example, a feature such as melodic perfect fifths contains a real number [0, 1] that represents the
percentage of perfect fifths with respect to all the intervals in the entire work. Other features like most
common melodic interval is represented as a natural number from one to twelve where each number
represents one of the twelve possible intervals. All features were normalized across the data set.

4 Methods

Several models were tried, all using fully connected feedforward neural networks. The first was
logistic regression which was used as a baseline model. It used a single layer with five nodes
representing the output for each possible composer and then used a softmax classifier to pick the
composer. Please note that all models trained in this research used a softmax output. The loss function
for softmax is as follows:

L = —ylog(y)

The second model added another layer of 5 nodes. No other hyperparameter tuning was used. This
model also functioned as a baseline model.

The third model was more sophisticated. It was a three layer model where the first two layers were
tuned with various different number of nodes. It used L2 regularization to combat overfitting the
training set. For L2 regularization, the following was appended to the overall cost function:

\ L
%ZHU’U]HZF
1=1

Adding this cost penalizes strong weights and reduces the propensity of the weights to mold to only
the training data. Additionally, the model was trained with an Adam optimizer which combines
momentum and RMSprop to more quickly reach the global minimum. The model was trained using
various different mini-batch sizes in conjunction with Adam optimization.

The fourth model added another layer and used similar techniques to the three layer model above.
As will be shown in the results section, the fourth model was prone to overfitting so dropout was
used to help assuage overfitting though with limited success. Dropout is another technique to combat
overfitting where various nodes of a given layer are randomly "zero-ed" out at a prescribed rate. This
prevents the model from relying on any one node or series of nodes to make its prediction.

5 Experiments/Results/Discussion

The results of the different models showed that the three layer model with L2 regularization and
Adam optimization was the best performer. Logistic regression was the worst performer with an
accuracy of approximately 73% on the testing set. The four layer model was prone to overfitting and
attempts at regularization through dropout and L2 regularization compromised training accuracy too
severely. The two layer model that was also used as a baseline was a better performer than logistic
regression but not quite as good as the three layer model. A summary of performance can be found in
Figure 1 below.

Figure 1: Generalized overview of performance by the four models assessed.

Model Performance
Model Training Accuracy | Testing Accuracy
Logistic Regression 73% 73%
Two Layer Model 82% 79%
Three Layer Model 87% 83%
Four Layer Model 84% 77%

Given that the training set was small, there were plenty of opportunities for hyperparameter tuning for
the various models. Most of that energy was devoted to the three layer and four layer model. In initial
training with the three layer model a learning rate of .001 was used with no attempts at regularization.
Through experimentation it was quickly discovered that a small number of nodes was needed for each
layer. Attempts to raise the number of nodes for each layer above ten proved ineffective. The final
number of nodes in order from the first layer to the softmax layer was eight, six and five, respectively.

The three layer model was trained on a mini-batch of size 64, though 32 and 128 were also tested
and found to be not as effective. Tuning of the epochs showed the best numbers were in the high
hundreds. Too small of epochs did not effectively train the model.

Initially the model had a training accuracy of 89% but a development set accuracy of roughly 79%
which was in line with the two layer model. To combat the overfitting, L2 regularization was added.
The optimal A rate found was .005. Additionally, dropout was initially used to combat overfitting.
But dropout was too severe of a compromise to training accuracy given the small number of nodes
used in each layer and the depth of the layers.

Figure 2: Examination of precision, recall, F1-score for the three layer model.

Three Layer Class Performance
Composer || Precision | Recall | Fl-score | Number of True Examples
Bach 97 92 .94 62
Beethoven .59 .59 .59 17
Chopin 92 .65 .76 17
Corelli .83 19 81 24
Haydn .69 .90 18 30

Figure 2 above shows the results of the three layer model based on precision, recall and F1 score.
Bach was the best performer of the group. The model was successful in both precision and recall
in identifying his works. From a statistical perspective, this result was expected given that there
was more data for Bach. From a musical perspective, this was also expected. Bach’s distinctive and
consistent use of musical intervals is well-known to music theorists and should be capable of being
learned by the model.

The model had the most difficulty identifying the works of Beethoven. The model performed poorly
both in precision and recall. There are two possible explanations for this: 1) the number of Beethoven
examples was comparatively small (the total data collected included only 188 examples, the second
smallest after Chopin), and 2) Beethoven is known for his change in style over the course of his life,
which could create an inconsistent profile in regard to his use of musical intervals. Beethoven’s fame
as a composer stems not only for the great works he produced but also his evolving style. Successive
works showed an evolution and maturity in musical chromaticism, which would in turn affect his
use of musical intervals. Given that the data spanned works from his entire life, the model would
have a difficult time distinguishing his evolution in musical intervals. Indeed, other researchers have
confirmed this hypothesis such as Herremans et al. stating "Beethoven typically does not focus on
using one particular interval, in contrast to Haydn or Bach, who have a higher prevalence of the most
common melodic interval[6]."

Figure 3: Confusion Matrix

A confusion matrix of the three layer model showing the performance of the three layer model on the
test set. Note: graphs were made using scikit-learn and matplotlib[11][12]

Confusion matrix, without normalization Normalized confusion matrix

0.9
Bach 2 0 1 4 50 Bach 0.03 0.00 0.02 0.06 -

Beethoven

Beethoven

Chopin Chopin

True label
True label

Corelli 2 o e = 2 Corelli

Haydn Haydn

3 N S &
& & & &

Predicted label Predicted label

The four layer model was an improvement in training accuracy before regularization but the model
overfitted the train data significantly. Initially the model had a training accuracy of 91% but a
development set accuracy of around 70%. Similar attempts to the three layer model were made to the
four layer model. It used a small number of nodes for each layer of 7, 6, 5, and 5, respectively. It

also used L2 regularization and Adam optimization and included a fractional dropout rate of 0.005.
Nevertheless, it was not as successful as the three layer model. Attempts at larger models also proved
ineffective.

6 Conclusion/Future Work

A shallow neural network was the best fit for this specific problem. Multiple rounds of parameter
tuning showed that the optimal network was a three layer neural network of eight nodes, six nodes,
and five nodes for the softmax classification. The optimal hyperparameters used to train the model
can be found in Figure 4 below.

Figure 4: Optimal parameters for the three layer model.

Number of Epochs 900
Mini-batch size 64
A for L2 Regularization .005
Learning Rate .001
(1 for Adam Optimization | .9
B2 for Adam Optimization | .999

The model was trained on 1041 examples with a development set of 150 and a test set of 150. In
summary, the model was able to achieve 83% accuracy on the test set, an improvement of about
10% on the baseline logistic regression model. When the data were trained on deeper models, the
model suffered from overfitting. In the optimal model, this was mitigated with L2 regularization.
Ultimately, the best balance was achieved with a shallow neural network, an appropriate model given
the complexity of the problem.

In the future, more data could be collected. The Kern database that housed the MIDI files only
contains a subset of each composer’s works, primarily keyboard music. But each of the composers
listed wrote significantly more music than what was passed into the neural network. Furthermore, it
would be interesting to expand the classifier to more composers or to train the models on composers
from different musical eras. This model was trained on composers from the 17th and 18th century.

Additionally, this paper tackled the issue of composer identification by examining a small subset
of the features in a given musical work. One could attempt to classify a musical work based on
instrumentation, melodic profile, rhythm, or any number of different features. In fact, a preliminary
model in the early stages of this research was trained on 141 features that included all these statistics
and showed an accuracy of up to 96% on a supplied test set. However, for the purposes of musicolo-
gists and theorists, subsets of features provide more information because they can ask more focused
questions about key aspects of style. Indeed, this paper has shown that the success of the model on
just information about a work’s interval structure supports the notion that musical intervals play an
important role in identifying musical style.

7 Contributions

As I was the only team member for the project, all work and information found in this report and
presentation is solely my own work. Inspiration was taken from the references below.

Code

Code and data for the project can be found here: https://github.com/andrewdavis33/CS230FinalProject

References

[1] Y. Han, J. Kim and K. Lee, "Deep Convolutional Neural Networks for Predominant Instrument Recognition
in Polyphonic Music," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 1,
pp. 208-221, Jan. 2017.

[2] Li, Peter et al. “Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural
Networks.” CoRR abs/1511.05520 (2015): n. pag.

[3] Toghiani-Rizi, Babak & Windmark, Marcus. (2017). Musical Instrument Recognition Using Their Distinctive
Characteristics in Artificial Neural Networks.

[4] V S Shelar and D G Bhalke. Article: Musical Instrument Recognition and Transcription using Neural
Network. IJCA Proceedings on Emerging Trends in Electronics and Telecommunication Engineering 2013
NCET:31-36, March 2014.

[5] Kaliakatsos-Papakostas, Maximos & Epitropakis, Michael & Vrahatis, Michael. (2010). Musical Composer
Identification through Probabilistic and Feedforward Neural Networks. Lecture Notes in Computer Science.6025.
411-420. 10.1007/978-3-642-12242-2_42.

[6] D. Herremans, K. Sorensen and D. Martens, "Classification and Generation of Composer-Specific Music
Using Global Feature Models and Variable Neighborhood Search," in Computer Music Journal, vol. 39, no. 3,
pp. 71-91, Sept. 2015. doi: 10.1162/COMIJ_a_00316

[7] Lebar, J., Chang, G., Yu, D.: Classifying musical score by composer: A machine learning approach,
http://www.stanford.edu/class/cs229/projects2008.html

[8] Francois Chollet. Comma.ai, 2016. URL http://keras.io/.

[9] McKay, C., and I. Fujinaga. 2006. jSymbolic: A feature extractor for MIDI files. Proceedings of the
International Computer Music Conference. 302-5. http://jmir.sourceforge.net/jSymbolic.html

[10] CCARH. 1984. Kern Scores. http://kern.ccarh.org/
[11] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

[12] John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95
(2007), DOI:10.1109/MCSE.2007.55

[13] Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).

