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Abstract

The widespread misuse and addiction to opioids - which include prescription pain
relievers, heroin, and synthetic opioids like Fentanyl - has become a national crisis
in the US. This ‘Opioid Epidemic’ has far reaching side effects, in everything
from public health to economic and social well being. A number of government
and private institutions have publically available historical data which, given the
right data analysis tools, can help us understand which areas of the nation have
the highest risk of a local overdose epidemic. As many opioid addicts ultimately
turn to illegal forms of the drug, there is a known marketplace on social media.
Additionally, pop culture has effectively popularized the use and abuse of opioids.
These, along with existing research, suggest that Twitter data might hold some
predictive power in assessing community risk of an opioid overdose outbreak. This
project analyzes the use of Twitter data and historical public health data with neural
networks to predict future community risk. Overall, historical public health data
proved more useful and better at generalizing to unseen counties (achieving a mean
squared error (MSE) of 0.01 and R? of 0.57 on test data). However, the Twitter data
showed some correlation with future community risk, suggesting the the potential
for further research.

1 Introduction

The opioid epidemic is plaguing the US - on average, over 100 Americans die from an opioid-related
overdose every day!!! . Many addictions form after patients are prescribed a legal opioid by a doctor
and form a dependency. After the prescription runs out, patients are often unable to pay for the same
quality drug and turn to cheaper opioids sold illegally. If community risk (likelihood of future deaths
by opioid overdose) can be accurately predicted, at-risk communities can be flagged early on so that
government prevention resources can be targeted towards these communities. Additionally, according
to the National Institute on Drug Abuse, an opioid overdose (from opioids that include heroin,
Oxycontin, Fentanyl, Morphine, Vicodin, Percocet and Methadone) can be effectively reversed if
the drug Narcan (naloxone) is given soon after overdose - while the patient is still breathing?. A
predictive model which suggests which counties in the US might be at high risk for an overdose
outbreak could help re-distribute Narcan, which is often in short supply, to those who need it most.
Thus, I have built a deep model for identifying opioid user groups and at-risk communities. More
specifically, I focused on two learning tasks: Historical and Twitter.

For the Historical task, the input is a 98-feature vector containing opioid prescribing rates from 2008
to 2016, the 2015 population estimate for that county, and raw death counts per COD (Cause of Death
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code) for the years 2008 to 2015. The output is the adjusted 2016 Opioid-related mortality rate per
10000 persons in the same county. This mortality rate acts as a risk level for the county as it suggests
either frequent overdoses or lack of Narcan availability to patients. For the more experimental Twitter
Task, the input is a word2vec embedding of a collection of tweets posted in that county in a single
week which contain opioid-relevant terms. These terms include both medical and “street” names for
common opioids. Some examples include: ‘Fentanyl’, ‘Codiene’, ‘Percocet’, ‘percs’, ‘Chinawhite’,
etc. The output is the same as the Historical Task: the adjusted 2016 Opioid-related mortality rate.
Although this project involves two distinct regression prediction tasks, similarly structured neural
networks proved effective for both. I experimented with different architectures, loss functions, and
generalization techniques. Ultimately, the best models for the Historical task show potential to
directly predict opioid risk at the county level within some threshold, while the same prediction task
directly from Twitter data proved much more difficult. I hypothesize that the combination of data
inputs along with additional tweet filtering would produce even better results.

2 Related work

2.1 Dataset scale

A number of very recent publications have attempted to analyze social media data and medical
records directly related to the Opioid Crisis. Che, et al. published a study in 2017 in which they
were able to successfully classify opioid users and to “extract key factors for different opioid user
groups” using RNNs on a dataset of over one hundred thousand opioid users®!. Similarly, Gebert,
et al. in 2018 looked at hand-selected features from autopsy data and fake medical records for a
single county in Pennsylvania and used both linear models and neural networks to predict (with high
accuracy) whether the COD was opioid overdose or not!!%!. In both of these publications, researchers
successfully applied deep learning to better understand trends in the Opioid Epidemic. While the
inspiration for my model architectures did come from the neural network in Gerbert, et al, it is
important to note that these papers were working at the individual scale while I am looking at the
county scale.

2.2 Using Tweets

There has also been a plethora of research tying social media data to trends in public health. In 2017,
Google showed that user search trends “can detect early signs of diabetes by monitoring combinations
of keywords” in Google search histories!!!. This hypothesis that user data acts a public health signal
extends to the Opioid Crisis. In 2017, Mackey et al. were able to automatically identify nearly
two thousand tweets marketing the sale of controlled substances online!'?!. In 2016, Sarker et al.
identified a process to automatically classify tweets as marketing the illegal abuse of prescription
medication, finding that “clear signals of medication abuse can be drawn from Twitter posts”'3]. A
2015 report by Chan et al. was able to use Twitter data to identify public sentiment regarding the
Opioid Crisis and behavior patterns from tweets!!*l. A 2018 study by Graves, et al. arrives at perhaps
the most powerful finding yet: “Regional differences in opioid-related topics reflect geographic
variation in the content of Twitter discussion about opioids. Analysis of Twitter data also produced
topics significantly correlated with opioid overdose death rates”!!3]. Based on the success of these
reports and my own intuition on the role of social media in the Opioid Crisis, I chose to look into
opioid-related Twitter data as a means of directly predicting future opioid-related mortality in the
US on the county level. Noticing the lack of existing works which utilize deep learning, I chose to
distinguish my work by applying neural networks to the problem of opioid-related tweets and to
focus on prediction at the county level.

3 Dataset and Features

There is no pre-existing, clean dataset related to county-level opioid crisis risk assessment so the
dataset for this project was curated from several sources, outlined below:

A. Historical Opioid Prescribing Rates from the Center for Disease Control (CDC)P): This
contains the opioid prescribing rate per 100 people (keep in mind some patients are prescribed more
than one opioid at a time) per county in the US, per year, for the years 2008 to 2016.
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Figure 1: Opioid prescriptions per 100 people by US county™!

'Them percs put me in my feelings every time & &'
'Taskforce Completes Successful Opioid Bust Near Tribal Reservations
in Arizona - Native News Online <link>’

'@kasie When | was 1st prescribed Oxy for pain, | was told it was not
addictive. For the next 6 years | was hopeless...

'where da percs at'

'Order quality Oxycodone, Percocet, Dilaudid, Codeine, xanax, viagra,
Nembutal, Ritalin, Valium, Roxicodone and many... <link>’

Figure 2: Example opioid-related tweets

B. Opioid-Related Deaths from CDC Wonder!*!: This table, requested from CDC Wonder, contains
the crude and age-adjusted mortality rates per county, per year for the years 2008 to 2016. The data is
further split into the Cause of Death Codes (CODs) related to Opioids as outlined by drugabuse.gov®!

C. Tweets Mentioning Opioids from Twitter API®): a database of tweets scraped from the
Standard Search API that mention any of the official “street” or medical names for Opioids as
outlined by the Foundation for a Drug-Free World.[”!

The data is collected and then distinguished on county: an (x, y) pair represents a single county. For
the Historical task, x; is a feature vector containing county 7’s 2015 population, death counts for each
of the 11 opioid-related death codes for each of the 8 years, and a prescribing rate per 100 people for
each of the 9 years. There are several counties / years missing prescribing rates. In preprocessing,
these NaNs are converted to zero values. X is then normalized before being split into train/dev/test
sets of sizes 461/86/61.

For the Twitter task, the free Standard Search API is used to obtain any tweets with a (latitutde,
longitude) tag within a 20 mile radius (radius corresponding to the average US county area: 1208
mi?) of the official county center, as outlined by the US census and official FIPS county codes!®!.
Unfortunately, due to the limitations of the Standard Search API, only tweets from the past seven days
are accessible. Thus, in this project 2018 tweets are used to predict 2016 opioid-related mortality rates.
However, given sufficient financial resources, a full year of tweets and the correct year (2015) could
be used. After scraping all available, relevant tweets, I remove any links, remove non alphanumeric
characters, and lowercase all characters. As some counties contain fewer relevant tweets than others,
all county-level embeddings are padded to the max length, resulting in input vectors of 140300
features. The embeddings are produced from Google’s pretrained word2vec model, available through
gensim!'8!. Then, I normalize these 608 140300-feature word embeddings and use them as X input
to the model.

For both learning tasks, y; is a single float that represents the sum over all 11 raw opioid-related
death code counts, adjusted to a mortality rate per 10000 persons for the year 2016. Only counties
which have full 2016 mortality data are considered. There are currently 3144 counties in the US, but
only 608 counties with sufficient y label data. Unfortunately, data augmentation is difficult given the
realistic geographic nature of the data set and the lack of clarity regarding its underlying distribution.
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Figure 3: NN4 model architecture (top) and NN3_twitter_dropout model architecture (bottom) .
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Figure 4: Mathematical formulas for different loss functions.

4 Methods

All models were implemented using Keras!!”!, with Tensorflow as the backed. After implementing
linear baseline models, the approach for solving this problem was to incrementally build up from
small neural networks, adding a layer at a time to see the improvements on success metrics. The
notation used for the different neural network model architectures experimented with is as follows:
Each of NN, (NN, NNs, and NN3) contain x dense layers with ReLU activation. The NN, structure
is three sets of a dense layer with ReLU activation and a dropout layer. (See Figure 3). In addition to
experimenting with dense layers and dropout, I compared models trained with different loss functions.
The two loss functions used were mean squared error (MSE) and mean absolute error (MAE), the
formulas for which are defined in Figure 4. Each of NN, _loss uses the specified loss function. And
NN, _twitter_lossdropout is similar to NN; _twitter_loss but with additional dropout layers after the
dense layers as shown in Figure 3.

5 Results

Although there are over 3000 counties in the US, due to limited data availability, this set was reduced
to 608 after preprocessing. Given the small data set and the relatively small input feature vector size
for both tasks, a batch size of the full length of X was chosen. All training, dev, and test set input data
was normalized. In all models, gradient clipping proved effective in reducing the effects of gradient

Historical Task Twitter Task

Model Architecture | Train R? | Test R? || Model Architecture Train R? | Test R?
Baseline linear 0.37 0.27 Baseline linear 0.53 -0.58
NN1_mse 0.44 0.10 NN1_twitter_mse -0.06 0.24
NN3_mse 0.65 0.38 NN3_twitter_mse 0.62 -0.40
NN4_mse 0.57 0.55 NN1_twitter_mae 0.48 -0.51
NN1_mae 0.59 0.50 NN3_twitter_mae 0.69 -0.38
NN3_mae 0.64 0.57 NN3_twitter_mse_dropout | 0.61 0.12
NN4_mae 0.20 0.37 NN3_twitter_mae_dropout | 0.60 0.02

Figure 5: Results averaged over 10-fold cross-validation. For the Baseline linear, four separate linear models
were run (linear regression, ElasticNet, Lasso, Ridge) and the results from the best model are displayed here.



“cliffs.” Hyperparameter tuning resulted in a top learning rate of 0.001 for both learning tasks. In
both models, overfitting to the training data was a big problem, although mitigated with the addition
of dropout layers. For the Twitter task model, an added hyperparameter was the minimum count a
word had to appear to be considered in the word2vec model. Ultimately, due to the smaller size of the
dataset and unique nature of the opioid terms, a min count of 1 was selected. Adam optimization
was chosen for both due to its learning speed. As this is a regression model, the primary metrics for
this project were R?, mean squared error (MSE), mean absolute error (MAE), and mean absolute
percent error (MAPE). For both learning tasks, combinations of these metrics as loss functions were
explored - primarily focusing on MSE and MAE as shown in Figure 5. However, R? was heavily used
to compare different architectures. Since the opioid mortality rate per 10000 persons is still often a
decimal, small MSE and MAE values were not particularly useful as final architecture comparison
metrics.

The NNx_mse results in the linear baseline models for the Historical Task (see Figure 5) suggest that
increasing the number of dense layers improves training results, but that the model does not generalize
well. With the addition of the Dropout layers in NN4_mse, we see a big improvement in the model’s
performance on test data. Similarly in the models using MAE loss, we see improvement with the
addition of fully connected layers. MAE loss over MSE loss leads to overall higher performance on
this learning task. The relatively good performance of the best baseline linear model suggests that
more than a few fully connected layers would lead to over-fitting.

Comparing the results from different model architectures, we see that the Twitter task is much more
difficult to learn. The addition of dense layers between NN1_twitter_mse and NN3_twitter_mse
improves training metrics but worsens test metrics, suggesting the need to reduce model complexity
or improve the model’s ability to generalize. The use of MSE loss over MAE loss seems to improve
performance. Finally, with many dense layers and the addition of dropout layers, we achieve the best
test set performance in NN3_twitter_mse_dropout with an R? of 0.12. While this resulting test set
performance is still relatively poor, the Twitter learning task itself is experimental and any correlation
between tweets and future mortality rates in a county is significant.

6 Conclusion/Future Work

In conclusion, we see that future opioid-related mortality rate prediction from historical public health
data at the county level is indeed possible with deep learning. Multiple fully-connected layers along
with dropout layers help the model generalize to unseen counties. Too many epochs or too deep of a
network reduce performance. Also, for the Historical learning task we see that mean absolute error is
more effective than mean squared error. Additionally, we learned in this project that while Twitter
data is not the most effective in predicting future mortality rates related to opioids, there is in fact a
correlation between the Tweets in a county that mention opioid-related terms and the overdose rate in
that county, as supported by previous works.

Given more time and resources, further improvements could be made in the Historical Task with the
addition of various publicly available datasets. These include, but are not limited to: drug addiction
facility admissions, poverty rates, median income, historical opioid price data, self reported use and
misuse, etc. I would explore these along with different means of representing missing data elements
other than zero initializations. For the Twitter task, a major hurdle in this project has been the lack of
financial resources to access the Premium Twitter API - the Twitter data collected for this project
was limited to the free Standard Search API, which only contains tweets from the last seven days.
Ideally, I would use tweets from 2015 to predict 2016, or perhaps even a collection of tweets over the
course of many years. Additionally, I believe it would be useful to explore tweet classification beyond
the mention of an opioid related term. How can we filter out news articles about the Opioid crisis,
song lyrics, and other less-relevant tweets? Effective classification would allow more granular tweet
filtering. Using the current data set, I would like to try using a combination of historical and Twitter
data as model input. Lastly, I would like to explore different loss functions. While mean squared
error and mean absolute error are useful, depending on the use-case of the model, a rank-based loss
function might be more effective.



7 Contributions

I worked individually for this project.

8 Code Appendix

The code for this project (excluding datasets) can be found on Github:

https://github.com/zrobert7/cs230_opioids
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