F##% #%% Detector: Identifying Offensive and
Obscene Comments

Akshay Gupta Sai Anurag Modalavalasa Alex Samardzich
06191248 06181125 06108597
akshaygu@stanford.edu anuragms@stanford.edu asamardz@stanford.edu
Abstract

The goal of this project is to assign the probability of a text comment being toxic,
severely toxic, obscene, threatening, insulting, and/or a form of identity hate. In
order to achieve this goal, three models were tested for their ability to correctly
identify abuse sentences with an objective of maximizing recall with accuracy
as a satisfying condition. A deep neural network (DNN) and a convolutional
neural network (CNN) were trained using character level embedding as features.
Additionally, a LSTM recurrent neural network (RNN) was trained using GloVe
(50d) word2vec embeddings as input features. After testing, it was observed that
the RNN was most successful in classifying these sentences. Test accuracy and
recall were at 93.0% while training accuracy and recall were at 93.4% and 99.6%,
respectively.

1 Introduction

Human interactions in online spaces are increasing, be it through social networks such as Facebook
or through comment sections of articles and posts. Many individuals feel emboldened to use extreme
speech and threatening language when communicating with others in online spaces because they
are not face-to-face with their victim. While free speech is protected under the First Amendment,
threatening the safety of others is not. Although some would argue that users could simply ignore
online comments, this is clearly not the first instinct of the youngest generation. News stories
describing teenagers being cyber bullied to the point of taking their own lives have become all too
common in the age of the Internet. Instead of bombarding the Facebook pages and YouTube comment
sections of children with insulting, racist, and threatening remarks, online platforms should have the
capability to quickly and accurately identify such remarks and flag them for review.

Improving the online experience of users by flagging such remarks is not only a pertinent task in
today’s world; it is also an extremely interesting deep-learning challenge. While the algorithm should
detect hateful, offensive remarks, it should also have the capability to understand the context: it is
not as simple as looking for trigger words. For example, while the phrase “I will kill you” would
be flagged as threatening, “the SF Giants killed it today” should be flagged as neutral. Additionally,
many innocuous online comments are made sarcastically or with certain tones that the algorithm will
have to learn to detect.

The input for this task is a text comment that has been taken from Wikipedia’s comment section.
Using this input, each model outputs a length-six vector containing a binary classification for toxic,
severely toxic, obscene, threatening, insulting, and identity hate comments, with a 1 meaning the
comment fell into that category. For example, an output label of [1 0 0 1 0 0] meant that the comment
was classified as toxic and threatening.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

The goal of flagging hateful posts has already been adopted by large online platforms such as
Twitter, who is testing new algorithms to remove some of the most toxic content on its site a1,
Additionally, natural language processing tasks such as this one have been hot topics in the deep
learning community as of late. Features such as Character Level n-grams, word embeddings, presence
of specific negative words (using a hate related terms word list) can be used and recurrent neural
network may be applied for the classification task [?!. Higher F1 scores were observed in the task
of classifying a tweet as sexist, racist or neither when LSTM/CNN + Random embedding/GloVe
embedding + GBDT classifier models were used . Application of CNNs with word2vec architecture
resulted in better F1 scores as compared to CNN with character n-grams/random vectors/word2vec +
character n-grams architectures /. SVM and LSTM architectures with sentiment polarity and word
embedding features were applied on strong hate, weak hate, no hate classification tasks. F score
associated with a no hate classification task and a strong hate classification task was the highest and
lowest respectively among the three !, Using TF-IDF weighted unigram, bigram, trigram features,
syntactic structure features, sentiment lexicon features, count of special characters (hashtags), number
of characters/words/syllables features, various models such as logistic regression, decision trees,
linear SVMs were applied for the classification task. The model was biased towards classifying less
hateful as compared to human annotations (61,

3 Dataset and Features

The dataset for this project has been taken from kaggle under the “Toxic Comment Classification
Challenge” 7). The set includes approximately 160,000 manually labeled comments from Wikipedia’s
talk page edits ranging from a few words up to 6,000 characters. Each comment has a binary
classification within six potential labels — Toxic, Severe Toxic, Obscene, Threat, Insulting, and
Identity Hate. A comment may be labeled in multiple categories. Figure 1 below shows the total
number of times each label had been applied in the dataset. Because examples can be labeled in
multiple categories, only around 16,000 entries, or 10% of the total examples, were not labeled as all
0’s as seen in Figure 1 below.

Figure 1: Data Label Count

15.294

[y
(=

MA192
212
= 8.449 7877
T8
-
=
=
S 4 &
o 1.595 - 1.405
0.478
5 | = =
. e > o 8
& &N F F o &
&0 f\o \1-':\"\' \\‘\ _\\\\\ .1\\
&9 & &
o g
Label

The example “COCKSUCKER BEFORE YOU PISS AROUND ON MY WORK” was labeled as
toxic, severely toxic, obscene, and insulting. In contrast, the example “bbq be a man and lets discuss
it-maybe over the phone?” was not flagged in any category. The second example highlights the
difficulty of this labeling task because one individual might consider the second example insulting
due to the inclusion of “be a man”.

The dataset was divided into training and test sets of 155,500 and 2,070 examples, respectively. The
input features to the DNN and CNN were character level embedding using the ord() function in
python with length equal to the maximum characters in a text comment in the data set, 6,000. The
input features to the RNN were word2vec embeddings of the first 200 words in the text comment
using the GloVe (50d) database. Before the comments were converted to word vectors, they were

made lowercase and stripped of special characters. If a word did not appear in the GloVe database, it
was assigned the unk token.

4 Methods

4.1 Structuring the deep learning project

Since the data has a binary classification for six variables and because there are common features
associated with the six variables, a multi task learning architecture with sigmoid activation functions
was implemented for each neuron in the last layer of the deep learning models developed here. The
objective of the neural network is to have high recall value associated with the predictions (the ratio
of the number of times the model predicted abuse sentences correctly to the total number of abuse
sentences) with an accuracy value associated with the prediction being a satisfying condition. By
analyzing bias and variance, efforts will be put in to gain insights into any under fitting/over fitting
problems that arise.

4.2 Model Architectures

A. Deep Neural Network + character n-gram

Each comment was converted into a 1x6000 vector with each entry in the vector containing a
numerical representation of a character in the comment. The benefit of this processing was that
unique characters could be captured, such as a**hole. The input vector was then fed into a 6-layer
model with 6000, 500, 100, 25, 12, and 6 nodes in each layer, respectively. Layers 1-5 used ReLU
activation while layer 6 used a sigmoid activation. The output of layer 6 was a 1x6 vector containing
the classification predictions for each comment. A threshold was used to convert the prediction
probability vector to a binary classification. The threshold was a hyperparameter for this model
and a value of 0.7 was chosen after tuning. Each layer’s weights were initialized using Xavier
initialization and the bias vectors were set to zero. To deal with the inherent class imbalance in
the dataset, the weighted cross entropy loss function L = -W[ylog(¥)] — (1-y)log(1-§) was used.
Weighted cross-entropy loss was summed over the six category types as the cost function, which was
then minimized using Adam optimization. The weight in the loss function was tuned to 30.

B. Convolutional Neural Network + character n-gram

To reduce the number of parameters and capture patterns in abuse comments, a convolutional neural
network was employed. The input features to the CNN were the same as the DNN. The model
architecture included 3 convolution layers (filter size 3, 4, and 5) with same padding and ReLU
activations followed by a global max pooling 1-D layer and 3 layers of fully connected network (size
50, 12, and 6). Xavier initialization was used and weighted cross entropy loss (weight tuned to 15)
was minimized using Adam optimization. A threshold of 0.5 was used.

C. LSTM Recurrent Neural Network + GloVe

Figure 2: LSTM RNN Architecture
Text File

Giove Input: | (None, 200, 50)
50d Input Layer
(50d) Output: | (None, 200, 50)
Input one, 200, 50
‘ LSTM p Ll)
‘ Output: | (None, 200, 128)
‘ Input: | (None, 200, 128)
Dropout
\ Output: | (None, 200, 128)
‘ Input: (None, 200, 128)
LSTM
‘ Output: (None, 128)
Input: (None, 128)
Dropout
Output: (None, 128)

‘ ‘ Input: (None, 128)
Dense
\ | ouput: (None, 6)

—r} Classifier

W

The first 200 words in each comment were converted into word vectors using GloVe (50d). If the
word was not featured in the database, it was given the unk token. The model architecture included
two layers of LSTM (128 dimension units, the return sequence was True for the first layer and the
return sequence was False for the second layer) followed by two fully connected layers of size 12 and
6 respectively (ReLU activation for the first layer and sigmoid activation for the second layer) with
Xavier Initialization as seen above in Figure 2. Weighted cross entropy loss (weight tuned to 20) was
used with Adam optimization for minimization. A threshold of 0.1 was used.

5 Experiments/Results/Discussion

After training, it was found that the most successful model when it came to both recall and accuracy
on the training and test sets was the LSTM RNN as seen below in Figure 3. The DNN performed
better than the CNN in terms of recall, which was likely due to the fact that the DNN had significantly
more parameters allowing it to better capture context. The high recall and lower loss of the RNN
compared to the other two models was expected, as RNNs have proven successful in a wide range of
natural language processing tasks. Even though the RNN was only trained for 20 epochs where as
the CNN and DNN were trained for 50, the RNN had significantly lower loss to begin with and at the
end of training compared to the other two models as seen in Figure 4 below. The RNN was trained
for fewer epochs due to the computational expense; the input to the RNN was a 200x50 dimensional
matrix. Part of the RNN’s success is likely due to the fact that the GloVe vector embeddings captured
the contextual meaning of the comments better than character level encoding since GloVe has been
pretrained on large datasets. Additionally, the results indicate that the models did not see the problem
of over-fitting as test and training set accuracy was comparable.

Figure 3: Results
DNN CNN RNN

Epochs Trained 50 50 20

Parameters 3,054k | 2.5k | 224k
Train Accuracy 85.1% | 82.9% | 93.4%
Train Recall 66.3% | 43.5% | 99.6%
Test Accuracy 84.0% | 83.1% | 93.0%
Test Recall 56.1% | 46.7% | 93.0%

Figure 4: Training Error

«=DNN
“=CNN
==RNN

g
=
S

Training Loss
s i
(=] (=]

o
4
S

Epochs

In early models, it was observed that the accuracy was extremely high and the recall was low. By
performing error analysis, it was found that setting the threshold for converting the output probability
vectors to binary classifications as a hyperparameter can remedy this issue. Increasing the weight to a
high enough value may eliminate the need for a threshold hyperparameter, but the process would
require significantly longer training and is computationally expensive. The learning rate and layer
dimensions used in each model were found iteratively by testing various sizes. Each model was
initially tested on a smaller dataset using a variety of hyperparameter combinations to identify the
right blend for full training. During model training, a mini-batch size of 32 or 64 comments was used
in order to perform a large number of gradient descent steps in each epoch.

While the RNN had high recall on the test set, one area of difficulty for the model was classifying
comments as severely toxic. The obscene comments had common qualities such as profanities, the
threatening comments used similar verbs, and the identity hate comments used words associated
with race, gender, and sexual orientation. However, the severely toxic sentences did not posses these
common features and the labeling seemed relatively arbitrary. Unsurprisingly, this led to many of the
missed recall examples in the test set for each model being those that should have been classified as
severely toxic. Eliminating this category entirely may lead to better results as the distinction between
severely toxic and toxic comments is not a great enough for web platforms to treat them differently in
their attempts to protect users from abuse.

6 Conclusion/Future Work

After training a DNN, CNN, and RNN to identify obscene and offensive comments, it was found that
the LSTM RNN was most successful at this task with test recall and accuracy of 93.0%. The LSTM
RNN’s success was due to its ability to better capture the context of comments using the GloVe
(50d) database and the sequential nature of the data. Future steps for this project include testing
a bi-directional LSTM and fine-tuning the word embeddings instead of the static GloVe database.
Acquiring data from other websites would also be beneficial as comments on platforms like Twitter
are fundamentally different than those on Wikipedia as tweets must be below a certain character limit
and abbreviations/slang are more common. Additionally, with more computational power, it would
be interesting to compare the results of the DNN and CNN using word2vec embeddings and the RNN
on character level embeddings. Due to the long training times (5-8 hours per model), this was not
possible during the first iteration of this project.

7 Contributions

Each group member was present for the majority of meetings and contributed equally to the project.
All members took part in the coding of each model and preparation of final report and poster.

References

[1] Kircher@4evrmalone, M. M. (2018, May 15). Twitter to Start Hiding Bad Tweets. Retrieved from
http://nymag.com/selectall/2018/05/twitter-to-start-hiding-bad-tweets.html

[2] Schmidt, Anna & Wiegand, Michael. (2017). A Survey on Hate Speech Detection using Natural Language
Processing. 1-10. 10.18653/v1/W17-1101.

[3] Badjatiya, Pinkesh & Gupta, Shashank & Gupta, Manish & Varma, Vasudeva. (2017). Deep Learning for
Hate Speech Detection in Tweets. 10.1145/3041021.3054223.

[4] Gambick, B., & Sikdar, U.K. (2017). Using Convolutional Neural Networks to Classify Hate-Speech.

[5] Del Vigna, Fabio & Cimino, Andrea & Dell’Orletta, Felice & Petrocchi, Marinella & Tesconi, Maurizio.
(2017). Hate me, hate me not: Hate speech detection on Facebook.

[6] Davidson, Thomas & Warmsley, Dana & Macy, Michael & Weber, Ingmar. (2017). Automated Hate Speech
Detection and the Problem of Offensive Language.

[7] Kaggle.com Toxic Comment Clasification Challenge https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

