Deep News: Scoring Articles by Quality

Harper Carroll and Susannah Meyer
Department of Computer Science
Stanford University
CS230 Spring 2018

harper@cs.stanford.edu | smeyer7@stanford.edu

Abstract

Finding quality journalism online is becoming increasingly more challenging to
navigate. In the age of digital consumerism, consumers are fed countless news
stories but have no baseline for evaluating which articles are worthy of their
attention. We investigated how to assign news articles scores based on their
quality in order to identify articles of high value that contribute more uniquely to a
consumer’s news experience. We built an RNN model with a single-layer LSTM
unit to assign scores between 0 and 1 to a dataset of news articles. We found that
such a model does a decent job of scoring articles given a similarity threshold of
0.1. However, there is room for improvement likely due to a number of constraints
relating to data, labels, and model complexity.

1 Introduction

The news feeds of the public are consistently bombarded with shallow, copy-and-pasted news articles
with the intention of driving up traffic for publishers’ revenue; relatively few news sources genuinely
produce new value in the online ecosystem. The rise of digital journalism is transforming the news
industry into one that values quantity over quality, and consumers continue to face challenges in
sourcing articles of consistently high value.

This leads to a number of problems within the news industry, including a mismatch of advertisement
quality and article quality, loss of time and efficiency for the public, and the spread of low-quality
articles that has begun to define the entire sphere of journalism. Such low-quality articles consist of
commodity news, in which publishers imitate news content from online with no journalistic effort
involved in order to produce a certain output volume of news, as well as articles that might be
classified as "fake news." Fake news has become an especially grave issue around the world, having
far-reaching political, social, and environmental effects. Our project aims to tackle these issues; we
set out to create an Automated Article Scoring (AAS) system to automatically assign quality scores
to articles with the hope of providing a metric for quickly evaluating articles based on the quality of
their text.

The input to our model is the main text of an article, which has been extracted from the article’s
URL and transformed into a list of word IDs. We then use an RNN model with a single-layer Long
Short-Term Memory (LSTM) unit to output a predicted article quality score between O and 1.

2 Related work

To prepare to approach this problem, we investigated previous related works to consider how previous
scholars approached similar scoring problems and the results their models produced. Three Google

CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

engineers found that compared to the use of a deep neural network, sequence to sequence learning
was enhanced with the use of a multilayered LSTM to map an input sequence to a vector of a
fixed dimension, and another deep LSTM to decode the target sequence from the vector [1]. To
solve a problem similar to ours, a group of engineers from Cambridge created a neural network for
Automated Text Scoring (ATS). Alikaniotis, Yannakoudakis, and Rei (2016) created a model that
forms word embeddings by learning the extent to which specific words contribute to the text’s score
and weighting words appropriately [2]. This group also used LSTM networks to encode text meaning,
and they achieved excellent results compared to other cutting-edge techniques. Two engineers at
the University of Singapore solved a similar task, Automated Essay Scoring (AES) [3]. Compared
to other models such as convolutional neural networks (CNNS) and RNNs using gated recurrent
units (GRUs), their model based on LSTM networks performed highest, outperforming the baseline
significantly without any manual feature engineering.

These two tasks of essay and text scoring address the same foundational technical problem as the
problem of article scoring at hand - that is, assigning a concrete score to a block of plain text.
However, these use cases involve differently framed applications and give weight to different parts
of text; for example, AES requires giving chosen weights to various grammatical structures. In
our research, we found that there is seemingly no work within the literature of assigning scores
to text of specifically journalistic endeavors; however, work has been done with similar goals of
efficiently distributing news content in mind. Zhang, Yao, and Sun completed a survey of deep
learning techniques used to implement Content Recommendation Networks (CRNs), which aim to
distribute content to consumers based on a number of preferences; the group found that a model
known as the Recurrent Recommender Network (RRN) was successful in building on top of an RNN
model with two LSTM networks to model the seasonal evolutions of items and changes of user
preferences over time [4]. Similarly, our project aims to predict quality scores for articles in order to
standardize a metric to help consumers interact solely with news of a certain quality.

3 Dataset and Features

We began with 55,000 examples in the form of article URLs from the Dallas Morning News publisher.
Our dataset was courtesy of JSK Fellow, Frederic Filloux, and each article within the dataset was
provided with an associated quality score that comprises the ground-truth score we have used to
train our model. This ground-truth score, labeled as the Overall Score in our dataset, is a weighted
average calculated by Mather Economics averaging four other determined scores. These four scores
include the Reach Score, Quality Score, Core Audience Score, and Yield Score, descriptions of which
can be found outlined in Figure 1 below. Each of these scores define a number of user engagement
metrics, including the scroll-depth of a user’s interaction with an article, the number of page views
an article received, and the amount of revenue generated by the article. We then used the Overall
Score, a weighted average of these four scores recording such metrics, as a proxy for the quality
score of an article. The Overall Score labels originally spanned a range from O to 100 with a few
outliers reaching into the thousands. To process these scores, we normalized the Overall Score of
each articles to fit into a range between 0 and 1, inclusive.

A great deal of preprocessing was required before being able to feed inputs into our neural network.
Using the Python Goose Extractor, we extracted the main textual content from each given URL. As
the Goose Extractor was unable to parse articles that relied fully on multimedia, this preprocessing
step left us with a number of empty article text files; because of this, it was necessary to write a script
to delete all empty article text files from our entire dataset in order to avoid scoring blank articles. As
a result, we ended up with a total of 50,300 non-empty article text files. We then used a tokenizer
from Python’s Natural Language Toolkit (NLTK) to transform the string of main text for each article
into word tokens. Next, we created a word-to-ID dictionary to map every word token to a unique
ID, including one <PAD> word that was needed later on to pad each training example to be of equal
length. We then used pretrained GloVE word embeddings to create a dictionary that mapped every
word ID to a 100-dimensional embedding vector. Therefore, the features of each article were the
list of word IDs as 100-dimensional embedding vectors, which were extracted using a Tensorflow
embedding lookup with arguments being the aforementioned embedding dictionary and article word
ID lists.

We split our training/validation/test sets into a 70/20/10 ratio.

URL URL

Overall Score Score averaging all scores below

Volume of: page views, non-direct and non-referrer page

Reach Score)
views

Quality Score Average scroll depth, average time per page

Proportion and volume of: known and local page views,
Core Audience Score direct and internal first referrer page views, page views
from users in the top 2 engagement buckets

Volume of: ad revenue, conversions from an article,

Yield Score pages on the path to conversion

4 Methods

To build our model, we implemented a dynamic Tensorflow RNN model with a single LSTM layer
with 100 hidden units using a tanh activation function; the outputs of our LSTM layer were then fed
into a fully connected layer with a sigmoid activation function. An RNN, a recurrent neural network,
is a network that can take advantage of its internal state in order to process sequences of inputs; an
LSTM unit, a long short-term memory unit, is a kind of building block for RNN layers that is capable
of learning long-term dependencies.

To feed in our training examples as inputs to our model, we needed to pad each example so that each
article within a training batch was comprised of the same number of word tokens. To do so, we added
’<PAD>’ as a word into our vocabulary in our preprocessing step of creating word-to-ID dictionaries
and embedding vectors. Each article with a number of word tokens below the maximum article length,
then, had a number of <PAD> tokens concatenated at the end of the article to standardize input length.
After using an embedding lookup to map each article’s list of word tokens as IDs to a corresponding
100-dimensional GloVe embedding vector, we passed our inputs into an LSTM layer. The outputs of
this layer were then masked in order to ensure that values of the LSTM’s output corresponding to
<PAD> tokens were not accounted for in calculating values for our cost function. Finally, our model’s
fully connected layer uses a sigmoid activation function to output score predictions.

To train our model, we calculated a mean squared error cost function:

Mean squared error = £ 3" (prediction; — score;)?

n

This cost function measures the average of the squares of our model’s errors (i.e. the difference
between the squares of our model’s predictions and the squares of the examples’ true scores). To
minimize cost, we used an Adam optimizer.

5 Experiments/Results/Discussion

In order to optimize the performance of our model, it was necessary to tune a number of hyperparame-
ters. The hyperparameters we tuned methodically include the number of LSTM hidden units, learning
rate, and batch size. In order to select final values for these hyperparameters, we simultaneously ran
a series of models on Farmshare, Stanford’s community computing environment. Each model ran
against a control and had a single variation in the value of one hyperparameter according to a range of
values that we selected beforehand according to appropriate scales (i.e. selecting from a logarithmic
scale when tuning learning rate, etc.). Hyperparameter values that led to higher performance on our

validation set were then selected for our final model running with the test set. The values that led to
higher performance were 100 LSTM hidden units, a learning rate of 0.0001, and a batch size of 100.

To measure performance, we defined a performance metric dependent on a similarity threshold.
Because we capped our ground-truth labels to be within a range of 0 and 1, we decided on a similarity
threshold of 0.1 to determine correctly scored articles. That is, a single article in our model was
classified as correctly scored if the model’s prediction diverged from the article’s ground-truth score
by a maximum of 0.1. We decided on this threshold to be strict enough to hold confidence in the
training of our model while lenient enough to avoid an unreachable level of precision. Below are the
final results we found in terms of cost and performance.

Train and Test Performance

0.98
0.88
0.78
0.68
0.58
0.48
0.38
0.28
0.18

Performance

o
=
N
w
IS
w
(o)}

7 8 9 10 11 12 13 14
Epochs

e Train performance es==Test performance

Train and Test Cost

0.19
0.17
0.15
0.13
0.11
0.09
0.07

0.05 e,
7 8 9 10 11 12 13 14

Epochs

Cost

()
—
N
w
IS
w
fo))

e Tr3in COSt emm=Test cost

Our results show that our model outputs high performance rates on the training set and outputs lower
performance rates on the test set. In testing a number of different variations on our model, we found
that having an LSTM layer as opposed to a basic RNN layer improved performance; likely, the
capability of the LSTM to deal with long-term dependency helped our model. Regardless, these
results leave room for improvement in terms of test set performance, which suggests a potential
problem of overfitting to our training set. Additional layers of complexity and the implementation of
regularization techniques like dropout regularization might help mitigate this for the future.

We have drawn a number of interpretations from these results. Regardless of the issue of an overfit,
the extraction of main text from the URLSs of each article in our dataset relied on the Python Goose
Extractor library to parse through the HTML of each article and keep only plain text within the
article’s body. The extractor was unable to parse articles which fully relied on multimedia, and it
was impossible for us to manually sanity check the parsing of those articles for which extraction
succeeded. This might lead to unstable results.

Next and importantly, the dataset of our model provided the aforementioned Mather Economics
scores related to user engagement as our ground-truth quality labels. Our results might show that
extracting features using only an article’s text from a natural language processing standpoint are
inadequate for predicting such scores. For example, consider the situation of an article going viral.
Oftentimes, the reason for virality is influenced by celebrities, politicians, or other publicity factors
completely outside of relation to the actual article text itself. If an article in our training set or test
set demonstrated a particularly high score due to a similar external factor, there would be no feature
within the article text to indicate that. The fact that our model could not fully predict accurate scores
given article text, then, perhaps suggests that user engagement and actual article content should
be evaluated separately. This leads to further questions surrounding the state of journalism and
questioning the factors that lead to article popularity outside of quality and textual effort.

6 Conclusion/Future Work

Our final model taking advantage of an LSTM layer with 100 hidden units demonstrated the highest
performance, and our results suggest that there is more work to be done in terms of expanding and
iterating on our model as well as considering alternate routes in data labeling that do not rely on user
engagement metrics.

With more time and resources to continue this project in the future, a first step we would take is
to investigate human-labeled quality scores for better ground-truth labeling that directly relates to
text quality. Our industry mentor, Frederic Filloux, has begun work on a human-scoring interface
which would make this possible in the near future. A crowdsourced dataset of articles across many
publishers with experts in the industry robustly scoring each article on text quality would better refine
our task and lead to more narrowed interpretations of results.

With these improved quality scores, we would propose a number integration into applications that
would benefit the industry as a whole. First, smart advertising could effectively match the revenue
of advertisements with the quality of an article, better incentivizing publishers to produce content
of a higher level. Further, this project could integrate into a personalized news experience based on
level of article quality, as well as into the enhancement of smarter news aggregators to remove low
quality sources. Generally, a universal quality indicator for news distributed on the web would save
consumers accumulated hours of time and legitimize high quality news sources.

7 Contributions

Harper Carroll: I conducted research on past works to develop a baseline model for our own problem.
I developed and debugged our initial RNN model using Tensorflow. I wrote a pre-preprocessing
script, run before running our main model to randomly divide all 55,000 articles (with their associated
55,000 article label files) into 70/20/10 train/dev/test sets, accessed easily by the model from their
respective folders. I worked to iterate hyperparameter tuning.

Susannah Meyer: I developed our initial RNN model using Tensorflow. I also created a job on
Farmshare to tokenize our entire dataset of articles in order to avoid downloading the set of 55,000
articles locally and in order to extract the article’s main text in tokenized form for model input. I

also worked to delete any empty files that were left as a result of failed text extraction and worked to
iterate hyperparameter tuning.

References

[1] Sutskever, I. & Vinyals, O. & Le, Q.V. Sequence to Sequence Learning with Neural Networks. Google.

[2] Alikaniotis, D. & Yannakoudakis, H. & Rei, R. (2016) Automatic Text Scoring Using Neural Networks.
Cambridge, UK: University of Cambridge.

[3] Taghipour, K. & Ng, H.T. (2016) A Neural Approach to Automated Essay Scoring. Austin, Texas: Association
for Computational Linguistics.

[4] Zhang, S. & Yao, L. & Sun, A. (2017) Deep Learning based Recommender System: A Survey and New
Perspectives. ACM J. Comput. Cult. Herit. 1, 1, Article 35.

[5] Pennington, J. & Socher, R. & Manning, C.D. (2014) GloVe: Global Vectors for Word Representation.
[6] Bird, S. & Loper, E. & Klein, E. (2009) Natural Language Processing with Python. O’Reilly Media, Inc.

[7] Goldberg, Y. & Levy, O. (2014) word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-
Embedding Method.

[8] Abadi, et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. tensor-
flow.org.

