Bird Generation with DCGAN

Zhiling Huang
Department of Computer Science
Stanford University
Stanford, 94305
zhiling@stanford.edu

Abstract

In this paper, I used unsupervised Deep Convolutional Generative Adversarial
Network (DCGAN) to learn how to generate images of birds. Unsupervised rep-
resentation learning is notoriously hard to train and this project is even more chal-
lenging due to the diverse looks of different birds, especially their different phys-
ical shapes, different body movements and different backgrounds.

1 Intro

The goal of the project is to learn how to generate images of birds, through unsupervised Deep
Convolutional Generative Adversarial Network (Radford et al. [2015]). The model is composed of
a discriminator and a generator. The discriminator is a classifier that predicts whether an image is
real or not. The generator generates images to try to fool the discriminator. Both are learned and
updated in each iteration of learning.

2 Data & Data Preprocessing

I am using Caltech-UCSD Birds 200 (Welinder et al. [2010]), which includes 11776 images of 200
types of birds. The images are of different sizes. To reduce the noise of background and make it
easier to focus only on the bird itself not background, I first used the bounding box to crop out just
the bird and then reshape the image to 64*64.

Figure 1: Left, Original Image of Brewer Blackbird; Right, Preprocessed Image



For example, in the original image, the brewer blackbird is standing on a bow] of bird food, which is
irrelevant to representation learning of bird. I cropped out the irrelevant part and leaves only the bird
part and then reshapes the remaining image to 64*64. By cropping out the background, the model

will not be spending unnecessary time on learning the representation of irrelevant part like the bowl
of food in this image.

3 Architecture

Real Image

Diseriniinater Cross Entropy Loss
(One-sided Label Smoothing)

‘ Z H Generator

Figure 2: Architecture

Discriminator

>

647643 32*32*128 16*16*256 8*8*512 4*4*1024

Flatten
- Fully-connected
L — Sigmoid

Figure 3: Discriminator

Generator

Figure 4: Generator

The discriminator takes in a 64*64 image and passes it through 4 convolution layers. The output of
the 4th convolution layer is flattened and then followed by a fully connected layer. Lastly the output
layer is a sigmoid function.



The generator is almost the exact reverse of the discriminator. It takes in a Z vector of length 100.
Z vector is passed in through a fully connected layer, whose output is of length 16384. This output
is then reshaped to be 4*4*%1024. Then there are 4 deconvolution layers and the output of the 4th
layer is 64*64*3, which is the generated image.

Hyperparameter Tuning & Architecture Hacks (Chintala et al. [2016]):

Use non-saturated cost function for generator, so that the generator learns faster.

2 updates for discriminator/1 update for generator. I tried several other ratios (3:1, 4:1, 1:2
etc), and also strategy that keeps updating generator and discriminator separately until loss
is smaller than some threshold. But 2:1 ratio produces most realistic images.

Virtual batch normalization for generator and regular batch normalization for discriminator.
Virtual batch normalization ensures that generated images in one batch are not correlated.

One-sided label smoothing, by changing the ground truth label to 0.9 for discriminator.
Use normal distribution (mean 0, variance 1), not uniform distribution for Z.
LeakyReLU for both discriminator and generator to avoid sparse gradients.

4 Result

4.1 Sample Generated Images

Figure 5: 64 Sample Generated Images



4.2 Incrementing Entries of Z Vectors

In this section, I explore with incrementing any one entry of Z vector while keeping all other entries
of Z the same. That way I know what effect the entry has. First I construct Z, with 100 samples
from a normal distribution with mean 0 and variance 1. Secondly I copy Z to have in total 8 same
Z. And then for entry i (any number from 1 to 100), I set the ith entry in 8 copies to be -2, -1.5, -1,
-0.5, 0, 0.5, 1, 1.5. Lastly, I used these newly generated 8 Z vectors to generate 8 images and see
what effect incrementing the ith entry will have in the result images. I repeated the process several
times (testing with different Z vectors and different index).

::

Figure 9: Example 4 Increment Z

We can see that some entries of Z vector shift color of bird from red to white, background color
from green to blue; some even change the shape of the bird (example 2); others might add a duck
head (example 4).

4.3 Average of Two Z Vectors

In this section, I tested with averaging two Z vectors and see whether the image generated with the
averaged Z vector is a combination of features in images generated by the two Z vectors separately.
Specifically I first generate vector Z1 and Z2 independently. Z3 is (Z1 + Z2)/2. Then I generate
images with Z1, Z2 and Z3.



Figure 13: Example 4 Average Z vectors

On the whole, the effect of averaging Z vectors is not easy to grasp. In some cases, the effect
is straightforward: for instance, in example 1, the average of a black bird and a white bird is a
gray bird; in example 2, the average of a red and black bird and a white bird is a yellow bird.
In other cases, the effect of averaging is harder to measure, such as example 3. In example 3, dark
green background color merged with white background color becomes light green background color,
which is as expected. But it’s harder to understand why in example 3, the average of two birds with
dark black belly has a white belly.

5 Conclusion & Future Steps

With 11776 images, I am able to generate images of birds vaguely and see some interesting results
by incrementing any one entry of Z vectors and averaging two Z vectors.

However, I am short of training images. This problem is worse due to the diversity of birds in the
corpus. There are in total 200 distinct types of birds, all with different outlooks. The hundreds
of types of birds also come with hundreds of different backgrounds, sandy rocks, leafy branches,
water, or the sky. What’s more their body movements also pose a challenge for representation
learning. Some birds are flying, some are standing on a branch or a stone, while some others are
floating on water. Lastly, the images are taken from various angles. Even the same bird, doing the
same thing, in the same background will result in different visual appearances due to the countless
different angles the image can possibly be taken.

One other thing I noticed is that generated birds are fat. This is due to resizing the bounding box
during preprocessing. Cropping in the center instead of resizing might work better.

It would also be interesting to see, for what range of Z, the result image is most realistic.

As with evaluation metric, I can use a pre-trained bird detector to check the percentage of 1000
generated images that are classified as bird. So that I have a more quantifiable metric.



References

Soumith Chintala, Emily Denton, Martin Arjovsky, and Michael Mathieu. How to train a gan? tips
and tricks to make gans work. 2016. URL https://github.com/soumith/ganhacks.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015. URL http://
arxiv.org/abs/1511.06434.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.



