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Abstract

Optical flow captures the positional displacement of each pixel from one frame
to the next. This study evaluates an approach to video gesture classification that
performs feature extraction using optical flow. The features are extracted from
temporally-adjacent pairwise frames of the video; the resulting sequence is then
fed into an LSTM classifier. This model is evaluated on the ChalLearn Looking at
People Isolated Gesture Recognition challenge (ICPR ’16). An optical-flow-based
classifier achieves 2.16% validation accuracy and 2.30% test accuracy on a dataset
consisting of 249 distinct gestures and 35K videos. This is shown to perform worse
than the baseline RGB-RGBD classifier, which achieves 7.24% test accuracy.

1 Introduction

Video gesture classification involves determining, given video of an actor gesticulating, which
predefined action s/he intends to portray from a limited set of possible actions. A general gesture
classifier may help further the development of sign language recognition by capturing latent features
in sequences of images which are useful for discriminating between different bodily gestures. The
video gesture classification task is challenging due to the inherent physical and temporal variations of
gestures performed across different actors, as well as noisy backgrounds and the slightly variable
differences in perspective, such as lighting conditions and distance between the camera and the actor.

This study investigates whether the inclusion of optical flow features improves the gesture classi-
fication task. Optical flow [1] captures the positional displacement of each pixel in a video frame,
relative to the last frame. Using pixel displacement as a feature is a good feature candidate for a
gesture classifier. Firstly, because the video samples in the dataset are captured from a fixed frame
of reference, background pixels remain static throughout the videos; thus, optical flow implicitly
performs foreground detection of the actor. Secondly, optical flow measures the relative speed of
movement of individual pixels. This may be useful in cases of self-occlusion, where one body part is
partially obscured by the other. Because optical flow considers individual pixels as part of the same
object across independent frames, it may be able to determine that a hand is moving across the frame
(even if it becomes partially occluded), as opposed to treating each pixel as an independent data point.
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Figure 1: Kinect RGB-D (left) and RGB (right) video frames depicting an actor performing a
handshake gesture, occurring adjacently at a video sampled at 10 fps.

2 Background and Related Work

There are a variety of techniques and model architectures that have been employed to address the
gesture classification task. A common approach is to perform data pre-processing on each frame
from the RGB and RGB-D videos using Histogram of Gradients (HOG) [2], Pose Estimation [3] and
Saliency Theory [4]. The processed data are often combined with the raw RGB and RGB-D images,
which are then stacked temporally and fed to a 3D-CNN to derive the output classification.

2.1 ICPR ’16 Isolated Gesture Recognition

A team from Xidian University achieved state-of-the-art accuracy of 56.9% as part of the classification
challenge associated with our dataset. They employ 3D convolutional neural networks and saliency
feature extraction [5]. A saliency video [4] is created from the RGB video and its features are
extracted using a 3D-CNN. The feature vectors are then concatenated and passed through a SVM
classifier.

Another team from the University of Wollongong achieved a test accuracy of 55.57% on this challenge
using Dynamic Depth Images, Dynamic Depth Normal Images and Dynamic Depth Motion Normal
Images for the feature extraction by only using the depth data. [2] Features extracted from HOG are
then passed through Bidirectional Rank Polling and 2D-CNN to create a sequence of score vectors.
The score vectors are fused and normalized to create a sequence of final score vectors.

2.2 Two Stream Convolutional Networks for Action Recognition

This project is largely inspired by the work of Simonyan and Zisserman [6], which demonstrated that
high gesture classification accuracy can be achieved using a convolutional neural network trained
using two-stream (1) RGB and (2) optical flow input. Lucas-Kanade optical flow [7] is used to
compute the horizontal and vertical displacement of each pixel within a frame, conditioned on the
previous frame. Optical flow features measure velocity of objects across sequential frames; it need
not indirectly learn this information by recurrently processing sequential frames.

3 Dataset and Features

Our classifier is trained and evaluated on the Isolated Gesture Recognition data set from the 2016
International Conference on Pattern Recognition (ICPR) Challenge. The data set comprises 47,933
gesture videos represented in color (RGB) and gray-scale depth Kinect (RGB-D) format.[? ] Each
video depicts an isolated gesture, such as "peace sign" or "waving". 249 total distinct gestures are
performed across 21 individuals. The data is preemptively split into train, validation, and test sets.

All in the dataset are downsampled by sampling frames at a fixed interval of 10 fps using FFmpeg
[8], at a fixed. This produces, on average, 40-100 frames per video. Each (C, H, W)-dimensional
frame for a given video is stacked along a time-step dimension to produce a four-dimensional (T, C,
H, W) tensor, where C represents the number of channels, and H and W the height and width (240 and
360, respectively). The inputs are normalized with zero mean and unit variance across each of the
three channels, and then a 224 x 224 center crop of the image is extracted.



Figure 2: The results of optical flow analysis on the video frames illustrated in Figure 1.

4 Methods

4.1 Cross-Entropy Loss

Both our ResNet and LSTM models employ cross-entropy loss, the standard loss function for
softmax classification. Cross-entropy measures the difference between a true probability distribution
p and estimated distribution ¢ as H(p,q) = — ), p(x)logg(x). This value is minimized when
the probability distribution of ¢ closely matches that of the true distribution p. For single-class
classification, the target probability distribution is represented by a one-hot vector, where the value
at the target index absorbs all the probability mass of 1. Thus, the cross-entropy loss for a single
example is given by the negative log-likelihood if the softmax probability value given to the correct
class label.

4.2 L2 Regularization

Regularization is a technique used to prevent the model from overfitting the training data. L2
regularization involves adding the L2-norm of a model’s learned parameters to its loss function.
When the L2-norm is large, the model’s parameters are likely too complex and thus overfitting the
data. This occurs when a disproportionate amount of weight is placed on a small subset of the
features. Though this may yield high training accuracy, these weights are usually sparse, and as a
result perform poorly when used to evaluate unseen examples that may not exactly resemble the
training set. As a result, the model is conservative about increasing the value of its weights, and thus
distributes weight more uniformly among the features. A well-regularized model is able to generalize
to the validation and test set.

4.3 Residual Networks

Residual networks [9] are a particular class of convolutional neural networks (CNNs) that manage
to learn well even when the network is structured in a deep configuration. In particular, residual
networks combine the input of the residual network with the output. Typically, the output of a neural
network is a function of some affine transformation F'(x) = Wx + b. For a residual network, the
output is given as F'(z) + x. It is thus easier for the function to learn the identify mapping (when
F(x) = 0), so during backpropagation, the vanishing gradient issue is dodged, since the network is
more likely to resemble the identity function by default.

4.4 Lucas-Kanade Optical Flow

Lucas-Kanade Optical Flow [7] is a technique for optical flow estimation, which measures the
apparent motion of objects caused by movement of the observer. It operates on two assumptions:

e Optical flow is nearly constant within the neighborhood of each pixel.

o Pixel intensities of an object do not change across frames.

Our project utilizes OpenCV’s [10] implementation of the algorithm, calcOpticalFlowFarneback
[11], also known as "dense" optical flow. It returns two separate matrices, representing horizontal
and vertical displacement for each pixel in the frame. These two displacement vectors are converted
into HSV (hue, saturation, value) color space and stored as an image.



4.5 Model Architecture

The preprocessing step involves training 3 separate deep residual networks, mirroring the structure of
the 18-layer residual network (ResNet18) exported by pytorch.torchvision.models [9]. The
three networks are used to in order to individually encodes RGB-D frames, optical flow frames of
RGB videos, and optical flow frames of RGB-D videos. For RGB videos, default pretrained weights
(trained on the ImageNet challenge) are used for encoding.

The residual networks are trained as part of a supervised classification task, wherein individual frames
of each video are treated as independent inputs, and the target label is equal to that of the frame’s
corresponding video. The residual network processes each frame, producing a 1000-dimensional
vector. It passes this vector through a fully-connected layer with softmax output representing the
output classification score. Thus, the residual network learns an encoding for each frame — one that
picks out gesture-discriminative features. Training is expensive due to the sheer number of videos in
our data set and the depth of the network, so this is trained once for each input type (attaining roughly
50% train accuracy and 2-3% validation accuracy), and then used to encode all frames in the dataset.

The LSTM network processes each input video, which at this point is represented as sequence of
T x 1000-dimensional frame encodings, frame-by-frame. The final output of the LSTM, another
1000-dimensional vector, is fed through 3 fully-connected layers with ReL U activation and mapped
to an output space with scores representing the 249 classes.

5 Results

5.1 Hyperparameters

Training is performed on a fixed minibatch size of 50, a choice that is based on CPU/GPU constraints
and the number of videos in the dataset. Our experiments perform hyperparameter search over the
learning rate, dropout, and weight decay (L2 regularization).

5.2 Evaluation

Our classifier is evaluated in terms of top prediction accuracy. Each prediction is simply the argmax
of the network’s output; our evaluation metrics only consider the top accuracy, although it could be
useful to know whether the true class label lies in the top-k classes ranked by prediction score. The
accuracy of the model can be compared with those from the published results of many other models
that competed in the ICPR 16 challenge. For this challenge, the state-of-the-art accuracy was 56.9%
[S].

5.3 Experimental Results

The table below represents result of random hyperparameter sweeping on the
RGBD-OpticalFlowRGBD LSTM model.

Hyperparameters Train | Valid | Test

Ir=0.007, w=0.0008, d=0.07 | 2.37% | 2.16% | 2.30%
Ir=0.008, w=0.0003, d=0.11 | 2.37% | 2.16% | 2.30%
Ir=0.01, w=0.00, d=0.10 2.37% | 2.16% | 2.30%

For an unknown reason, our model achieved identical performance across all swept hyperparameters
over a small number of epochs. The accuracy quickly reaches a plateau at 2.30% test accuracy and
2.16% validation accuracy, as seen in Figure 3.

5.3.1 Baseline Model Comparisons

The highest classification accuracy across each combination of features (RGB, RGBD, OFRGB
(optical flow RGB), and OFRGBD (optical flow RGBD) are presented in the table below. Note
that the LSTM model is identical across each of these experiments, so only the input features are
compared.
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Figure 3: (Left) RGBD-OFRGBD LSTM Classifier. Training vs. Validation Accuracy for the
RGBD-OFRGBD LSTM classifier. (Right) RGB-RGBD LSTM Classifier. Training vs. Validation
Accuracy for the baseline RGBD-RGBD LSTM classifier.

Features Train Valid Test

RGB 78.71% | 6.09% | 8.13%
RGB-RGBD 65.21% | 7.00% | 7.24%
RGBD-OFRGBD | 2.37% 2.16% | 2.30%

6 Conclusion/Future Work

The inclusion of optical flow features as input to our model did not improve classification accuracy
of the model. The highest performing model was achieved by the RGB LSTM model, which does
not include optical flow features. The test performance of the RGB and RGB-RGBD model do not
differ by much, though it is likely that the performance is sensitive to hyperparameter choices, and
not enough values were swept.

Lucas-Kanade optical flow justifiably produces poor feature encodings on RGB-D images, since
these images depict grayscale objects moving through space. RGB-D videos violate both the pixel
intensity and neighborhood uniformity assumptions posed by Lucas-Kanade optical flow estimations.
Depth images are likely to involve varying pixel intensity across adjacent frames, since the value of a
pixel measures an object’s distance relative to the camera. If a hand moves toward the camera, then
the pixel intensity will consequently change; as a result, Lucas-Kanade will not attribute any motion
to the hand. This is a likely explanation for why the RGBD-0pticalFlowRGBD LSTM model yields
low classification accuracy.

I suspect that there exists a bug in the implementation of the RGBD-OFRGBD LSTM model, because
the training accuracy and loss did not change after several iterations. Theoretically, the model should
be able to overfit to the training set as it did for the RGB and RGB-RGBD LSTM models. If given
more time and computational resources, I would further debug and investigate these issues. I would
also evaluate the LSTM on RGB-OFRGB inputs, because this is most similar to the two-stream
classifier [6] which performed well on a separate dataset. Unfortunately, the final implementation
failed to deserialize OFRGBD frames, possibly due to a GPU/software compatibility issue, and
time/money restrictions precluded us from remedying these issues, so these results could not be
gathered. They would have been very significant to the results and conclusions of this project.

Future directions for this project involve running the model for longer periods of time and experi-
menting with denser frame sampling (>10 fps), since this is a hyperparameter to which optical flow
may be particularly sensitive. In addition, it would be worthwhile to replicate the exact two-stream
convolutional network [6] network on the ICPR *16 challenge. Outside of using optical flow, I
would recommend training separate models for hand, face, and body detection to improve perfor-
mance. Many of the gestures are similar to one another, so giving special treatment to these bodily
components are likely to improve classification accuracy.

Furthermore, there is a noisy degree of variation in the videos; actors performing the same gesture
are seen performing gestures at different distances or in different quadrants of the video frame. In
addition, some actors had different interpretations for how exactly to sign a gesture. Perhaps the
dataset can be cleaned, or additional preprocessing steps can be used to normalize the position and
size of each actor in the video.



7 Contributions

All portions of the project concerning optical flow features were carried out by the author, Kenny
Leung, and serve as the main difference between the CS230 and CS231N submissions. Many thanks
to Lucio Dery for his advice and support throughout the development of this project.

The code was jointly implemented by Kenny Leung, Ying Hang Seah, and Hiroshi Mendoza. All
members were involved in experimentation. A breakdown of contributions is as follows:

e Kenny: Experiment configuration and logging schema, hyperparameter sweeper, basic data
loaders, training and validation logic, visualizations and analysis, baseline LSTM classifier
with a pretrained ResNet18 CNN model, all optical flow related models.

e Ying Hang: Improvements to configuration and logging, CUDA integration, combination
data loader, testing logic, custom ResNet18 LSTM models, feature normalization and
custom ResNet18 models for RGB-D inputs.

e Hiroshi: Dataset acquisition and cleaning, frame sampling, GPU handling, explored hard-
ware integration to connect the classifier with an Intel Realsense depth camera.
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