Identifying Tweets Written by Russian Troll Accounts

Ethan Brown, Brendan Edelson, and Elijah Taylor
esbrown@stanford.edu, bedelson@stanford.edu, elijaht@stanford.edu
Department of Computer Science
Stanford University

June 10, 2018

Abstract

As the trend toward technological security has been brought to the forefront of news media
scrutiny in the past 6 months, there has been heightened focus on the infiltration of fake news
into our social media technologies. The ability to classify and filter fake content will be a critical
task for social media and other tech companies over the coming years. Most notably, the impact
of Russian Troll Accounts on the 2016 U.S. Presidential Election has led to a great deal of
discussion in the public sector. We investigated the use of neural networks to predict whether
or not a politically-themed tweet had been posted by a Russian Troll Account, utilizing 1.2
million scraped Tweets for our dataset. Ultimately, our LSTM model greatly outperformed our
classification expectations. We conclude our paper by discussing future potential projects in this
area.

1 Introduction

For our project, we are investigating a number of tweets written by fake accounts attributed to
Russian hackers regarding the 2016 Presidential election. We hope to be able to discern some of the
critical factors that separate this content cultivated by Russian hackers from tweets written by the
American populace. This project is important because we hope to use concepts of deep learning to
glean information with implications of national security and preservation of democracy.

For our Russian tweets, we are using the dataset “Russian Troll Tweets” from Kaggle. The dataset
includes 200,000 tweets identified as Russian bot accounts. Each entry in the set contains fields
such as Twitter handle, date and time tweeted, tweet text, and hashtags used. For the non-Russian
tweets, we are using a dataset of over 1 million politically-themed tweets from the 2016 election
season collected by a Harvard research project. We then use the tweet text as input to a neural
network to output a prediction of the likelihood that the tweet was published by a Russian Troll.

2 Related work

1) Jiangiang, Zhao, Gui Xiaolin, and Zhang Xuejun. "Deep Convolution Neural Networks for Twitter
Sentiment Analysis." IEEE Access 6 (2018): 23253-23260

2) Bayot, Roy Khristopher, and Teresa Gongalves. "Age and Gender Classification of Tweets Using Con-
volutional Neural Networks." International Workshop on Machine Learning, Optimization, and Big Data.
Springer, Cham, 2017.

3) Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional networks for text classifica-
tion." Advances in neural information processing systems. 2015.

4) Zhao, Luda, and Connie Zeng. "Using Neural Networks to Predict Emoji Usage from Twitter Data."

5) Badjatiya, Pinkesh, et al. "Deep learning for hate speech detection in tweets." International World Wide
Web Conferences Steering Committee, 2017.

Listed above are five studies we used when researching our project that similarly used deep learning
in order to classify text, most of them using tweets. Study 1 used a ConvNet with Twitter’s GloVe
embeddings for sentiment analysis. Study 2 used Word2Vec embeddings and a ConvNet for age and
gender classification. Study 3 tested various deep learning frameworks for text classification, finding a
ConvNet with characters as input as successful. Study 4 compared a ConvNet and LSTM with GloVe
vector for emoji prediction. Study 5 used learned word embeddings, gradient boosted decision trees,
and LSTMs to detect hate speech in Tweets. The results from Study 3 in 2015 were very cutting-edge,
and it was sited by hundreds of other studies for its findings, as they counter-intuitively discovered
that character inputs to a ConvNet work much better than word-features for text classification.

Overall, these studies helped us decide on using GloVe vectors in our implementation. They
seemed to be the best way that we could convert the text of the tweets into an input the LSTM could
use effectively. Most of the studies used ConvNets, LSTMs, or both models. Overall, we decided on
using the LSTM after speaking with TAs at office hours, although we are interested in experimenting
with ConvNets in the future to see they compare to our results.

3 Dataset and Features

In our dataset, we had over 1 million non-Russian tweets and just over 200,000 tweets published by
Russian Troll Accounts. Due to the large amount of data we had, we decided to split the the train,
dev, and test sets up into 98%, 1%, and 1% of the data respectively. This means we had roughly
1,176,000 examples in our training set, and 12,000 examples in our dev and test sets respectively.

We did quite a bit of pre-processing. For the non-Russian tweets, the dataset contained a list of
tweet id’s, and we used a hydrator to scrape the actual tweet from twitter using the tweet id. Next,
for both the Russian tweets and the non-Russian tweets, the data we acquired was not in a directly
usable form. We built R scripts that took in the data and exported it into a csv/json file, which we
eventually read into another pre-processing python file. In this file, we retrieved the text of the tweet,
removed extraneous characters, and used the nltk tokenizer to split the text into words. Using this
tokenizer was much more accurate than the built in python tokenizer and proved to be a critical step
in getting our model to work with the GloVe vectors input into our model. Additionally, the nltk
tokenizer allowed us to tokenize emojis, which were included in the GloVe corpus. We then wrote the
tokenized text out to another csv file. These csv files were read into our LSTM.py file, at which point
we used the Keras pre-processing tokenizer to convert each tweet into a sequence of word-indexes that
could be fed into the Embedding layer in our LSTM. Finally, we padded the series of word-indexes
with the maximum number of words that could be in a tweet, which we set to 60 (using 140 character
tweets). We also loaded each of the GloVe vectors into a dictionary mapping each word in the corpus
to its corresponding 200-dimensional GloVe vector, which we passed into the Embedding layer.

An example of the text from a Russian tweet in the dataset is (the tweet in the dataset contained
other fields): "#IslamKills Are you trying to say that there were no terrorist attacks in Europe before
refugees were let in?".

In the processing step, it was output as follows: ['#’, 'IslamKills’, ’Are’, ’you’, ’trying’, ’to’, 'say’,
‘that’, ’there’, 'were’, 'no’, ’terrorist’, ’attacks’, 'in’, "Europe’, "before’, refugees’, 'were’, "let’, ’in’, ’?’].

Finally, the tweet was fed to the embedding layer as a series of 60 word indexes, with each number
corresponding to the word index of the word in the vector output by the processing step. Additionally,

each word index after the length of the tweet was set equal to 0 by the padding step.

The citations for our datasets (and the GloVe vectors) are in the References section as follows:
Kaggle dataset of Russian Troll tweets: [4], Harvard Dataset of Politically Themed Tweet IDs: [5],
GloVe vectors: [7].

4 Methods

The first method we used, which was our baseline, was a vanilla 3-layer neural net with a sigmoid
output layer. The baseline’s performance wasn’t all that impressive, so we quickly moved on to find a
better model that would better classify tweets.

In order to solve our problem more effectively, we trained a Long-Term Short-Term memory
network (LSTM), a special type of recurrent neural network. The key idea behind recurrent neural
nets is that the output of a layer is fed back into itself, making them effective in the context of
sequential data. An LSTM is a type of recurrent neural net that is able to "remember" information
for a long time. For example, the LSTM is excellent at processing sentences, as it is able to use
important words from earlier in the phrase to provide context for words that occur later, a concept
called a long-term dependency. This is made possible by the LSTM’s "gates" that selectively re-
member and forget information, determining what information should pass through and be output
to the next layer. We chose to use an LSTM for our problem because of its effectiveness in text analysis.

Since we were solving a binary classification problem, we decided to use a binary cross-entropy
loss function, as seen below:

1 N
BCE=——) vy.-log(3)+ (1 —y)-log(1 -3,
NZ‘; g(3) + (1 —y) - log(1 -39

5 Experiments/Results/Discussion

Our primary metric for our model was accuracy, as we were trying to find the model that could
most accurately predict whether or not a tweet was posted by a Russian Troll account. Initially
for our hyperparameter tuning, we used a uniform search over a logarithmic scale to find the
hyperparameter combination that maximized the accuracy of our model. After, we kept all other
hyperparameters at their optimal value from the first step and, sampled around the optimal value to
find the hyperparameter we used in our model. The second step is visualized in the graphs below for
our dropout rate, number of LSTM hidden nodes, and number of nodes in our fully connected layer.
We also tuned the batch size used in our mini-batch gradient descent.

Hyperparameter Tuning Number of LSTM Hidden Nodes Hyperparameter Tuning Number of Fully Connected Nodes

0.2300

0.26 0.2275

0.2250

0.2225

loss.

0.2200

02175

0.2150

0.2125
70 80 90 100 110 120 130 140 2 3 4 5 6 7 8
number of nodes. number of nodes

Hyperparameter Tuning Dropout Rate

0.250

0.245

0.240

0.235

loss

0.230

0.225

0.220

0215

0210

0.20 0.25 030 035 0.40

dropout threshold

0.45 0.50

Ultimately, our model worked even better than our expectations. The results were as follows:

Model # Train # Test Train Test
Examples Examples Accuracy Accuracy
3-Layer NN w/ 35,000 5,000 68.12% 62.15%
25D Glove
vectors
LSTM w/o Fully 1.1 Million 12,000 97.45% 94.93%
Connected Layer
LSTM with Fully 1.1 Million 12,000 96.69% 95.07%
Connected
Layer*
*Final model

Our LSTM model with a Fully Connected Layer was able to correctly classify the tweets with
over 95% accuracy, which we attributed to our use of the nltk tokenizer, the use of GloVe vectors, as
well as the aptitude of the LSTM model for this problem. The training loss and accuracy graphs
of the LSTM model are seen below. Due to the large size of our dataset, the model trained quite
quickly, reaching over 92% accuracy after just one epoch. We used early stopping to decide to train
the model for 10 epochs, as that was the point at which the dev loss had stopped decreasing previous
times we ran the model:

model accuracy model loss

— train
—— test

°
N

°
©
a

0.95

accuracy

0.94

The confusion matrix of our model, seen below, sheds light on where the model struggled. The
model was able to classify non-Russian tweets with 98.5% accuracy and Russian tweets with 91.97%
accuracy, meaning that the model was better at classifying human tweets than Russian Troll tweets.
This was not surprising, as many of the Russian tweets used more traditional (and oftentimes formal)
language, whereas some human tweets used slang, which would have been difficult for the Russian
Troll accounts to accurately include in their tweets.

Confusion Matrix

9843 153
161 1843

Qualitatively, we were able to notice by examining the misclassified examples that a majority of
them came from retweeted content from other users. Oftentimes, when a tweet was retweeted, the
user didn’t add any content of their own. Since we weren’t using any other input factors besides the
text of the tweet itself, it would be impossible for our model to learn this distinction. For example,
one Russian tweet that was misclassified as non-Russian was the following, which was a tweet posted

by a human that had been retweeted by a russian troll account: ['rt’, ’@lnataliemaines’, ’’, '’, ’get’,
'banned’, ’for’, 'not’, 'liking’, ’bush’, ’and’, 'now’, ’trump’, ’can’, ’practically’, 'put’, 'a’, "hit’, ’out’,
‘on’, ’hillary’, ’and’, ’hes’, ’still’, ’all’, ’over’, ’country’, radio’, ’!", "hypocrites’, ’!’]. In fact, our model

would have no way of distinguishing this retweeted content from content posted by a human who
had retweeted the same tweet. We noticed that the model usually ended up classifying conservative
retweeted content as Russian Troll tweets and liberal retweeted content as human tweets. This factor
alone contributed greatly to the tweets that our model misclassified.

Finally, we noticed that in our second model, the LSTM without a Fully Connected Layer did
overfit to the training data slightly. Therefore, we added a Fully Connected Layer with dropout to
our model which reduced the overfitting of our model and slightly increased the test accuracy of our
model as well.

6 Conclusion/Future Work

Overall, we were extremely pleased with the results of our project. Our LSTM with a fully connected
layer performed the best out of the models we tried. This model worked the best because of an
LSTM’s ability to consider long-term dependencies, while the fully connected layer helped to reduce
overfitting. It’s very interesting that the LSTM was able to learn language patterns well enough that
it could predict whether tweets composed of original content were posted by Russian Troll Accounts
with extremely high accuracy. This gives us great hope in future efforts to maintain the integrity of
content on social media platforms.

If we had more time to work on the project, there are a few things we would look into pursuing.
Firstly, we would add features to our input beyond solely the text of the tweet, as including metadata
like username, time posted, and location could help our neural net learn more subtle indicators and
trends. Additionally, as discussed above, this could help with the issue of misclassifying retweets,
which seemed to be our main problem. We also thought about how our work could be applied to
slightly broader scenarios, like using a softmax output to determine the probabilities of a tweet having
various political biases.

Finally, with extra time, we would like to look into datasets of more current tweets, to see if our
model generalizes to content that has been posted recently, or if language use has changed enough
in the past 18 months that our model is no longer applicable to current content on Twitter. We
would also like more time to specifically analyze hidden nodes in the LSTM to see what words have
large impacts on the model’s end prediction. This would allow us to see what words were used
disproportionately by Russian Troll Accounts and would give us great insight into how generalize our
model to other applications.

7 Contributions

The majority of the time our group was working on the project, all three of us were together working
collaboratively. All three of us worked together on the main part, which was implementing the LSTM
in Keras. Naturally, some members took initiative on and ownership of specific parts of the process.
For example, Brendan implemented the baseline and spearheaded a lot of the data preprocessing,
Ethan worked to tune the hyperparameters of the LSTM once it was built, and Elijah took initiative
in error analysis once we ran the LSTM on the test set. Overall, our group dynamic was excellent,
and we are all excited about the results of our teamwork!

References

[1] Bird, S., Loper E. and Klein E. (2009), Natural Language Processing with Python. O’Reilly Media Inc.

[2] Francois, C. (2015). keras. [online] Available at: https://github.com/fchollet/keras [Accessed 9 Jun.
2018].

[3] Hunter, J. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering,
9(3), pp-90-95.

[4] Kaggle.com. (2018). Russian Troll Tweets | Kaggle. [online| Available at: https://www.kaggle.com/vikasg/russian-
troll-tweets [Accessed 8 Jun. 2018].

[5] Littman, J., Wrubel, L. and Kerchner, D. (2016). 2016 United States Presidential Election Tweet Ids.
[online] Dataverse.harvard.edu. Available at: https://doi.org/10.7910/DVN/PDI7IN [Accessed 7 Jun. 2018].

[6] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Scikit-learn: Machine learning in Python.
Journal of machine learning research, 12(Oct), pp.2825-2830.

[7] Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global Vectors for Word Representation.
[online] Nlp.stanford.edu. Available at: https://nlp.stanford.edu/projects/glove/ [Accessed 8 Jun. 2018].

[8] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

