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Abstract

This research note summarizes the results of an implementation of Mask R-CNN
to perform object detection and segmentation of galaxies in overlapping galaxy im-
ages. The results are promising with the network being able to attain a detection
mean Average precision of 0.9. Further improvements can be done on the architec-
ture to improve performance on semi-transparent objects like galaxies without hard

boundaries.
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1 Introduction

Upcoming ground based telescopes like the Large Scale Synoptic Telescope(LSST) coming
up in 2020 will observe the sky at resolutions previously not possible. Galaxies too dim
to be observed earlier will now be visible, leading to increased overlapping of observed
galaxies. Most scientific measurements require individual isolated galaxy images, making
it a vital task to correctly separate each galaxy image. Convolution Neural Networks
(CNN) are well posed to tackle this problem and perform object detection and separation.
Here we present the analysis and results of using Mask Region-based CNN (Mask R-CNN
here-after) [3] architecture to perform detection and instance segmentation of galaxies in
images of overlapping galaxy pairs.

2 Related Work

Object detection and instance segmentation is an active area of research in computer
vision applications. These advances have been largely driven by architectures like Fully
Convolution Network (FCN) Fast/Faster R-CNN [1, 7]. In the Region-based CNN (R-
CNN) approach [2], the model divides the image into smaller candidate regions and then



perform CNN detection independently on each Region of Interest(Rol). Faster R-CNN
extends this further with an initial stage that proposes candidate object bounding boxes
and a second stage that extracts features using RolPool from each candidate box and
performs classification and bounding-box regression.

An alternate model, fully convolutional instance segmentation (FCIS) [4], predicts a
set of position-sensitive output channels fully convolutionally and simultaneously address
object classes, boxes, and masks, making the system fast. But, as noted in [3], FCIS
exhibits systematic errors on overlapping instances and creates spurious edges. Since our
dataset will largely comprise of overlapping objects, Mask R-CNN is better suited for the
task.

3 Methodology

3.1 Mask R-CNN

Mask R-CNN comprises of a FPN [5] backbone that predicts Rol, with a Faster R-CNN
branch that perform classification and bounding box regression in parallel to a mask layer
that generates segmentation masks (Figure 1). The mask branch is a small FCN applied to
each Rol, predicting a binary segmentation mask in a pixel-to-pixel manner. This analysis

used Tensorflow, Keras implementation of the architecture !.
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3.2 Loss Function

During training, we define a multi-task loss on each sampled Rol as:
L= Lcls + Lbox -+ Lmask (]-)

The classification loss Les(u, p) = log(py) is the log loss for each class v with network
predicted probability p. The box loss, Ly, is defined over a tuple of true bounding-

box regression targets that denote the center of the box and dimensions for class u, v =

Ug, Uy, Uy, U ), and a predicted tuple ¢, = (t, %, t% t} ), again for class u is :
Yy xr "y “wrYh
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"https://github.com/matterport/Mask RCNN
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To each of the predicted masks, a per-pixel sigmoid is applied, and defined L.qc as

the average binary cross-entropy loss:
Liask = —(ylog(p) + (1 —y)log(1 —p)) (4)

3.3 Dataset

The complete dataset comprises of 20,000 simulated overlapping galaxy images with vary-
ing degrees of overlap. They were simulated using the modular galaxy image simulation
toolkit GalSim®. Segmentation maps were created by selection regions with pixel values
above a threshold value for each galaxy. An example image of an overlapping galaxy and
the segmentation is shown in Figure 3 (left panel) showing the overlapping image and the
segmentation map for each galaxy.

The dataset was then divided into 90% training set, 5% validation and 5% test set
as shown in Table 1. Taking advantage of rotational symmetry of galaxy profiles, data
augmentation was performed by rotating the images + mirroring the image, in order to

increase the training by four as shown in Figure 4.

3.4 Network Training

The network was initialize with weights pre-trained on the Ms COCO dataset. Since our
overlapping images vastly differ from the MS COCO dataset [6], we retrain the weights.
Initial training of the training set revealed that a major contribution to the loss function
arose from the Mask-CNN bounding box loss indicating that the architecture head required
more training than the backbone. We proceeded to perform training in multiple stages
to improve performance-with the initial training on just the head, keeping the backbone

weights fixed and then proceeding to fine-tune all the layers Table 2.

2https://github.com/GalSim-developers/GalSim



Table 1: Dividing dataset Table 2: Training Steps, Mini-batch size: 64

Dataset Training Validation  Test Layers trained epochs learning rate
20,000  18,000(x4) 1,000 1,000 Head 1-15 0.001
(72,000) 4+ 16-20 0.005
90% 5% 5% all 20-60 0.001
all 60-80 0.0001
Model Loss
2.25
—— train_loss
2.00 val_loss
1.75 Figure 5: Training set
LEH loss(blue) and valida-
ﬁ tion set loss(yellow) per
Bl epoch during the 80
1.00 training epochs.
0.75
0.50
0 10 20 30 40 50 60 70 80
epoch

The dataset image size is 120 x 120, much smaller than the 800 x 800 for training the
MS COCO dataset. Thus the RPN anchor sizes were reduced in proportion in order to

be able to detect features with scales desired here.

4 Results

Results from the training over 80 epochs is shown in Figure 5. The blue and yellow lines
plot the training set and validation set loss respectively for each training epoch. Initially
the training and validation loss decreases with time. After epoch 50 the validation loss
remains constant even though the training set loss decreases indicating that training longer
will not result in improved performance on the test set.

A summary of the detection performance of the network on the test set are shown in
Table 3. While the network is able to detect galaxies with a precision of 75%, it also has
a significant number of false positives.

Table 3: Results of evaluation on test set

Precision Recall F1 score
0.75 0.625 0.682

An example of a successful detection is shown in Figure 6. The left panel shows the
truth image of a two galaxy blend input to the network. Overlaid on it is the segmentation

mask and bounding mask, which were not input to the network. The right panel shows
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the bounding box and segmentation mask for the two galaxies detected by the network.

The number on the right panel next to the bounding box is the detection probability.

5 Conclusion

The network was successfully trained and was able to detect individual galaxies in the
overlapping pair images along with a segmentation mask and bounding box. The results
look promising, however, the detection precision level can be improved as required for
scientific analysis.

6 Future Work

The fundamental challenge of using instance segmentation here is that galaxies do not have
sharp edges; the brightness dropping with distance from the center. This makes it difficult
to develop segmentation maps that capture the exact boundary of the object. In addition
unlike ordinary objects, galaxies are relatively transparent. Thus in an overlapping pair
the foreground galaxy will not occult the background galaxy, rather the pixels in the
overlapping region will include brightness from both objects.

To address these challenges of the model for our application we propose to modify
the network for future applications. Instead of generating segmentation maps per object
we propose to dissect the final layer the mask generating layer, provide that as input to
another network along with the input overlap image, to generate isolated image per object.

The model was tested on simple instances of two-galaxy overlaps that had smooth
elliptical profiles. However, real telescope images would involve multiple objects including
different classes of galaxies a well as stars. The network can be further trained in these

cases to obtain a more useful application for scientific analysis.
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