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Abstract

The conventional method of finding a right screw bits to use for a screw is a simple
trial and error process, where the user tries a series of screw bits that seem like an
appropriate fit for a target screw. As a result, the process of inserting or removing a
screw becomes inefficient due to less than optimal fit of the screw bit to the screw
head, and even worse, can result in damaging the screw in use.

In this paper, we present our methods for automating the process of finding the
right screw bit for the screw to be used through image classification using convo-
lutional neural network (CNN) model. We obtained a training data consisting of
2-dimensional images of 13 different types of screws, augmented the data through
image data augmentation methods, and built a customized CNN models based
on existing CNN models that are built on the ImageNet database. In this paper,
we compared and analyzed multiple existing CNN models that we build the final
model upon, and present a set of models that fit best for different use cases. We
name our model AlphaNUT and we have shown that we were able to achieve an
accuracy of around X% on a 13 class screw classification task.

1 Introduction

From furnitures, picture frames, home appliances, electronics and many more, millions of users
are actively assembling and disassembling these household items using household tools such as
screw drivers or power drills. The process of building and disassembling household items involves
interacting with numerous types and sizes of screws, which ultimately requires finding the right screw
bit to use for the screw of interest. This process has been historically performed through trial and error
process, where the user simply grabs a screwdriver that seem as if it fits best to the screw of interest.
As an example, an iPhone 6 involves 6 different types of screws for full disassembly, and the process
of finding the right screw drivers for each type of the screw is extremely painful and erroneous in
many cases. Also, engaging the screw with a power drill or a screwdriver while using inadequately
fitting screw bit, can not only cause inefficient application but critically damage the screw head as
can be seen in Figure 1. The cost and annoyance caused by such problem are significant and can be
highly mitigated if proper screws bits are identified for the respective screws.

With the advent of large, accessible data set and increasing ease and availability of processing power,
the field of machine learning, especially deep learning, has gained an enormous attention and have
made tremendous improvements in recent years [LeCun et al., 2015, Guo et al., 2015]. Among
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Figure 1: Example of broken screws from applying pressure using screw bit with inappropriate fit.

numerous applications of deep learning, image recognition applications using convolutional neural
network (CNN) have shown many successes[Simonyan and Zisserman, 2014, Krizhevsky et al.,
2012]. Thus, given CNN’s proven track records on image recognition, we experimented on applying
deep learning to provide a simple, yet, effective solution to the problem of finding the correct screw
bits. The goal is classify the type of the screw using a combination of screw image and CNNs, and
then recommend a correct screw bit or a screwdriver to the user with high probability. The overall
process of detecting the type of the screw is as follows. First of all, the input to our CNN model is a
set of 2 dimensional images of the top of the screw. We first take an image of the top of the screw, we
then pre-process it to be a specific size and finally augment a single image into a multiple image to be
used for classification for higher accuracy. Then, we then use a set of customized CNN models to
output a probability of the screw belonging to each of the known class of screws, which we can map
to an appropriate screw bit to use and ultimately informs the user to use the correct screw bit. By
having such tool on our hand, we significantly increase the effectiveness of how a user assembles any
household product.

2 Related work

Field of image recognition has been around for decades. However, since 2010, ImageNet [imagenet]
database has become the standard on measuring the performance of image recognition tasks for
neural networks. Since then, there have been numerous papers, such as Guo et al. [2015], Simonyan
and Zisserman [2014], Szegedy et al. [2015], Alemi [2016], Chollet [2016], Howard et al. [2017]
that attempted to broaden the field of image classification via CNNs. These papers attempted at
creating new CNN architectures to improve performance, reduce training time or model sizes. Besides
these works, there are countless works, such as Donahue et al. [2014] that applies these CNNs
for performing image classification on various domains. Our work differs from all other previous
work, because no one has yet attempted to use image classification on the domain of screw and bolt
recognition. Our dataset is completely unique, as it comes from our own customized hardware.

3 Dataset and Features

Identification of screws involve not only the shape (e.g. Philips, Flat, Hex) but also the exact size
of the screws (e.g. PHO, PH1, PH2). The size aspect provides a unique challenge to this work
by necessitating a new dataset from scratch. Importing screw/nut images only gives the shape
information but does not contain the exact size information due to the nature of the shots taken such
as inconsistent focal length and sizing. To overcome this problem, we built a custom camera solution
that has a fixed focal length and a casing that holds the camera module in the fixed distance from our
target - screws/nuts. This platform allowed us to take images that contains not only the shape of the
screws but also the dimensions. Moreover, screws are found in diverse backgrounds such as wood,
metal, edges/corners and to make our model learning such conditions, we mimicked certain scenarios.
As for the overall dataset, we included 12 different types of screws with varying shape/size as shown
in Figure 2.



Figure 2: 12 Classes of Screws/Nuts.
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Figure 3: Architectures of VGG, MobileNet and Xception (left to right).

4 Methods

‘We built multiple models with varying properties, enabling us to choose a specific model depending on
a specific use case. The models employ transfer learning [Wikipedia] extensively thus are built upon
the weights obtained from various well-known CNNs models that are pre-trained using ImageNet
dataset. The set of CNN models used to obtain the weights are as follows: VGG16, VGG19 [Si-
monyan and Zisserman, 2014], MobileNet [Howard et al., 2017], InceptionResnetV2 [Alemi, 2016],
InceptionV3 [Szegedy et al., 2015], and XCeption Chollet [2016]. For the interest of space, the
architecture for the subset of these models can be seen in Figure 3. Each models is characterized
by what metrics it wants to optimize. VGG 16 and VGG 19 is built for accuracy, but it is very
computationally expensive. In order to solve the problem Inception networks were built to reduce
computational requirements by adding sparser connections between layer and also added different
type of convolutions to capture different aspects of the input. Xception is an improvement over
Inception with the aim to split the cross-channel correlation and the spatial correlation of an image.
MobileNet is an optimized version of Xception to run on mobile.

The main reason for using the pre-built and existing models are as follows. First of all, given that we
have a limited amount of manually obtained data, transfer learning helps us to bootstrap our model.
Secondly, many of the earlier layers in the CNN models tend to learn the generic features of an image,
such as where the boundary exists or spatial correlations within a channel, thus we can avoid creating
new models to learn the same features again. Lastly, training deep models require large computational
power and lengthy training time, which we hoped to avoid.

Given each of the CNN models, we removed final set of layers that are responsible for completing
the final image classification tasks for the ImageNet database. The effect of this is that the output of
each model now consists of the weights that can be used as an input to a final layer of choice. Thus,
we pass our training into the pre-trained model to obtain the weights for each of the images. Given
the pre-trained weights, they are used as an input vector to our softmax logistic regression model []
with various hyperparameters, such as type of regularization, regularization parameter and stopping
criteria. We also experimented with two different types of regularization, L1 and L2, where the L2
regularization adds ||6]|3 to the loss function, making the loss function
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and L1 regularization adds the ||0||; regularization term instead. Softmax regression then finds the
final weights that minimizes the given loss function, which we use as our final model. Note that larger
C here has an effect of reducing regularization.

vggle vggl9 resnet inceptionv3 inception-resnet-v2  mobilenet  xception
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Figure 4: Size of the feature output from each mode.

Finally, Figure 4 we show the size of the weights that are outputted from each model. This acts as
our input ans well as the features to our final model.

5 Experiments/Results/Discussion

In this section, we discuss our methods for experiments, as well as our results of the experiments.
We first discuss the experimental setup. We have two set of experimental setup consisting of
Google Colaboratory [Google] and a Linux machine. Google Colab notebook was mainly used for
retrieving the weights from the existing CNNs models, which was accelerated by utilizing Tesla K80
GPU [Nvidia] offered by Google Colab. The Linux machine, which houses an Intel i7-8700K, 32GB
of RAM, Nvidia 1080ti GPU and Ubuntu 18.04, was used to train the last softmax regression layer
and also to obtain experimental data. The CNN models trained on ImageNet were obtained via Keras
application [Keras] library. Using the Keras, we preprocessed our training set to the appropriate size
for each of the model. Then, we passed the training data to the model to obtain the weights. Once we
have obtained the weights, we moved it to a local server, where we built the last softmax regression
layer using scikit-learn [scikit learn] library with SAGA [Defazio et al., 2014] solver. SAGA solver
does not allow us to change the learning rate, so we used a constant learning rate as given. The paper
on SAGA provides more detail on what learning rate it chooses based on the data.

‘We now discuss our initial results for each of the model. First, we show the build time for the weights
from each of the model for different regularization method.

Regularization Type  vgglé vggl9 resnet inceptionv3 inception-resnet-v2  mobilenet xception
L2 59s 73s 33s 1459s 814s 842s 17s

L1 173s 209s 83s 1691s 1569s 1213s 79s

Figure 5: Build time for each model using L1 and L2 regularization method. The stopping threhold is
0.01 and the regularization parameter is 1.0.

We can see that the build time increases linearly with respect to the size of the weights outputted by
each model. We now show the loss curve for training each of the models.
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Figure 6: Loss curve of our models based on various regularization parameters.

We can see that mobilenet and xception tend to converge the fastest toward the threshold. We now
discuss the accuracy and F1 score for each model on different regularization methods. We can see
that resnet performs the worst across the board and mobilenet performs the best. To visualize this,
here are the confusion matrix for resnet and mobilenet for 0.001 threshold and 1.0 regularization.
After analyzing the faulty predicted images in both models, we concluded that they were from similar
screws with slightly different sizes. Looking at the accuracy chart, we can see that as regularization
increases, accuracy decreases. Finally, we can see that 1.2 regularization performs a little bit better
than L1 regularization for most models, but also results in much higher training time. We hypothesize



Threshold, Regularization vgglée vggl9 resnet50 inception-v3 inception-resnet-v2 xception mobilenet

0.01, L1, C=0.2 98.97,0.99 98.42,0.98 69.60. 0.68 99.37, 0.99 99.52, 1.0 99.60, 1.0 99.92,1.0
0.01, L1, C=0.5 99.52,1.0 98.81,0.99 73.24,0.72 99.37, 0.99 99.52, 1.0 99.60, 1.0 99.92,1.0
0.01, L1, C=0.8 99.52.1.0 98.89,0.99 74.35,0.73 99.37, 0.99 99.52, 1.0 99.60, 1.0 99.92, 1.0

0.01, L1, C=1 99.52, 1.0 98.89,0.99 74.58,0.73 99.37, 0.99 99.52, 1.0 99.60, 1.0 99.92, 1.0
0.01, L2, C=0.2 99.21, 0.99 98.57,0.98 62.55, 0.66 99.45, 0.99 99.52, 0.99 99.60, 1.0 99.92,1.0
0.01, L2, C=0.5 99.21, 0.99 98.57,0.98 68.17, 0.68 99.45, 0.99 99.52, 0.99 99.60, 1.0 99.92, 1.0
0.01, L2, C=0.8 99.21,0.99 98.57,0.98 69.99, 0.68 99.45, 0.99 99.52, 0.99 99.60, 1.0 99.92,1.0

0.01, L2, C=1 99.21,0.99 98.57,0.98 70.23,0.68 99.45, 0.99 99.52, 0.99 99.60, 1.0 99.92,1.0
0.001, L2, C=0.2 99.6, 1.0 99.29,0.99 74.66,0.73 99.6, 1.0 99.6, 1.0 99.76, 1.0 99.92, 1.0
0.001, L2, C=0.5 99.6,1.0 99.29,0.99 78.7,0.78 99.6, 1.0 99.6, 1.0 99.76, 1.0 99.92, 1.0
0.001, L2, C=0.8 99.6, 1.0 99.29,0.99 81.08, 0.80 99.6, 1.0 99.6, 1.0 99.76, 1.0 99.92, 1.0
0.001, L2, C=1 99.6, 1.0 99.29,0.99 82.03,0.81 99.6, 1.0 99.6, 1.0 99.76, 1.0 99.92,1.0

Figure 7: Accuracy and F1 score for the models with varying threshold and Regularization.
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Figure 8: Confusion matrix comparison for resnet and mobilenet

that the high accuracy for all of the models result from our method of collecting data and augmenting
it and our model has over fitted the training data. All of training our data comes from black and
white images taken with a standardized camera at a standardized focal length. Also, as we increase
regularization, we see the accuracy decrease, which shows a sign that training data is similar to test
data. We believe that as we increase the type of test images, the accuracy and F1 metrics would most
likely to change.

6 Conclusion/Future Work

In this paper, we built AlphaNUT, a CNN based screw classifier, to aid millions of users who are
actively interacting with screws in their daily lives. AlphaNUT a 12 class classifier based on weights
obtained from various existing CNN models. We have shown that we perform at a very high accuracy,
precision and recall on our test data set. However, using augmentation on small number of test
data to generate more test data may have been problematic and may result in higher result than
expected. Thus, for our future work, we plan to gather more training data via manual collection and
also fine-tune our model further. Also, we initially tried to use Google Colab engine for building
our models with little success due to its slowness in retrieving data from our Google Drive. We can
revisit that in the future and try to use other Google storage solutions.



7 Contributions

Contributions between Ryan and Sean was fairly equivalent. We both participated in building the
camera module to collect training and test data, augmenting data and discussion about building the
models. We both participated equally in preparing the poster and the final paper. If we have to
emphasize which member was responsible for which deliverables, we summarized it in the list below.

e Ryan: Managed data generation process, class selection, data clean up, and data augmenta-
tion process.

e Sean: Managed model selection, writing scripts for building models, experimentation and
hyper parameter tuning.



References

A. Alemi. Improving inception and image classification in tensorflow, 08 2016. URL https:
//ai.googleblog.com/2016/08/improving-inception-and-image.html.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357,
2016. URL http://arxiv.org/abs/1610.02357.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for

non-strongly convex composite objectives. In Advances in neural information processing systems,
pages 1646-1654, 2014.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description.
CoRR, abs/1411.4389, 2014. URL http://arxiv.org/abs/1411.4389.

Google. Google colab. URL https://colab.research.google.com/.

Y. Guo, Y. Liu, A. Oerlemans, S.-Y. Lao, S. Wu, and M. S. Lew. Deep learning for visual understand-
ing: A review. 187, 11 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

imagenet. Imagenet. URL http://image-net.org/about-overview.
Keras. Keras applications. URL https://keras.io/applications/.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In E Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097-1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436 EP —, 05 2015. URL
http://dx.doi.org/10.1038/nature14539.

Nvidia. Tesla k80 gpu. URL https://www.nvidia.com/en-us/data-center/tesla-k80/.
scikit learn. scikit-learn. URL http://scikit-learn.org/stable/index.html.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. CoRR, abs/1512.00567, 2015. URL http://arxiv.org/abs/1512.00567.

Wikipedia. Transfer learning. URL https://en.wikipedia.org/wiki/Transfer_learning.



