PianoNet: A Hyperparameter Study of a Deep Neural
Network for Automatic Music Transcription

Maddie Wang Susan Chang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
maddiew@stanford.edu schang92@stanford.edu
Abstract

In music transcription, musicians typically listen to a recording then transcribe
what they hear, note by note. This process can take hours, depending on the
complexity of the music. It is important for composers and musicians to make
scores without needing to manually write each note out. Despite research showing
that convolutional neural networks (CNN) has led to the most accurate results in
computer vision these past couple of years, we decided to do a hyperparameter
study on a fully connected Deep Neural Network (DNN) to see if DNNs can
outperform CNNs in polyphonic music pitch prediction. At a high level, our DNN
takes in Constant Q Transforms of raw audio files, then outputs the predicted
pitches present in the main melody of the audio files.

1 Introduction

Transcribing music is a difficult task even for human experts. As of now, musicians, who have
extensive knowledge in music, must manually compose music online or on paper. To make music
composition less time-consuming and more accessible to those not familiar with music theory,
we introduce a deep-learning application that can automatically transform piano recordings into
digital notes. Currently, automatic music transcription (AMT), which attempts to simplify the
transcription process through detecting rhythm, pitch, and chord patterns, plays a significant role in
music transcription. However, it is fails to be comparably accurate with human performance because
of its sensitivity to instrument timbre and harmonic overlap [1]. In recent years, convolutional neural
networks have led to great improvements in acoustic modeling and is currently the leading approach
in automatic music transcription [8]. Though CNN currently outperforms all other approaches in
AMT, we noticed that there is a lack of research in optimizing DNN hyperparameters. We thus created
a deep learning application that allows musicians to transcribe piano recordings using a deep neural
network (DNN) approach and tuned its hyperparameters to see if DNNs can outperform the leading
approach in automatic music transcription. Specifically, we experimented with various optimization
algorithms including Adam, Adagrad, AdaMax and RMSProp, tuned the dropout rate, incorporated
isolated notes in training, and increased the number of hidden layers in our hyperparameter study.

On the whole, our algorithm takes in an audio recording of piano music in .WAV format as its input.
After pre-processing our .WAV file through Constant Q Transform, we can then use our deep neural
network to output a predicted array of pitches that correspond to the piano notes played in the audio
file. The output of our DNN can potentially be further processed as a MIDI (Musical Instrument
Digital Interface) file which can then be converted to a music score.

CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Our project seeks to extend the approach done by Diego Morin, where the author implemented a
Deep Neural Network following the recommendations proposed by Sigtia, Benetos, and Dixon in
their 2016 paper "An End-to-End Neural Network for Polyphonic Piano Music Transcription" [8].
Due to time constraints, the author did not tune their model’s hyperparmeters. We thus build upon
their research by optimizing performance through tuning the model’s hyperparameters.

This task of applying deep learning methods to music transcription is interesting, because the research
of Sigtia et al., and replicated efforts by Bereket and Shi, Stanford authors of the project entitled "An
Al Approach to Automatic Natural Music Transcription", and Li, Ni, and Yang, Stanford authors
of the project entitled "Music Transcription Using Deep Learning" have consistently shown that
ConvNets consistently perform better than the unsupervised methods most commonly used in current
AMT programs.

Following the approach taken by Sigtia et al, we are breaking down our AMT system into two parts,
acoustic modeling that identifies pitches in polyphonic audio, and score generation that converts the
MIDI file into music notation.

3 Dataset and Features

The dataset we used in our project was the MIDI Aligned Piano Sounds (MAPS) dataset, which is
a database of MIDI-annotated piano recordings. The MAPS dataset is divided into 9 subsets, each
of which contain 30 audio recordings in wav format. In each subset, for each wav file there is a
corresponding ground truth provided both as an aligned MIDI file and a text file. The text file contains
the pitches of all the notes contained in the recording, as well as the onset and offset times of each
note. Seven of the nine subsets contain recordings generated by high quality synthesis software and
in various recording conditions. Furthermore, each of the nine subsets of audio recordings were
subdivided into four categories of recordings: isolated notes and monophonic excerpts (ISOL set),
chords with random pitch notes (RAND set), usual chords that are standard to Western music such as
classical or jazz music (UCHO), and pieces of piano music (MUS set). For the purposes of our project,
we used the recordings from the MUS set. Thus, the MUS sets from the seven software-generated
recordings comprised our initial training set, totaling 210 pieces of music. The two remaining subsets
of the MAPS dataset consist of recordings done on a real piano, so the MUS set from these real piano
subsets comprised our validation and training sets, with 30 pieces of music for each of the validation
and training sets.

Raw audio files are represented as byte arrays that contain information about the samples, or amplitude
of the audio signals, in that audio file. We preprocessed each wav file in our training and test sets to
extract the main features from audio files. The sample rate and raw data from each wav file is read,
and the audio files are transformed from stereo (audio using multiple channels or signals) to mono
(audio using one channel) by taking the mean of the samples from the two channels. Then the time
series representation of the audio in mono is then transformed to a time-frequency representation
using Constant Q Transform (CQT). CQT is like the Fourier transform except with geometrically
spaced center frequencies. The frequency of musical notes are in geometric progression, so this
makes makes extracting CQT features more suitable for automatic music transcription. As shown
in the below figures, the CQT produces frequency-time plots that best resembles the ground truth
pitch-frame plots that are to be predicted.

Figure 1: Pitch-frame Plot of ground truth label (x-axis is frame, y-axis is pitch)

Figure 2: Time-Frequency Plot of CQ Transform of a WAV input (x-axis is time, y-axis is frequency)

The CQT performed on the raw data from our input wav files was computed over 7 octaves with 36
frequency bins, or frequency intervals between samples, per octave. Thus, our features are the 252
total frequency bins per frame.

The ground truth labels for the training audio were created from the text file that corresponds to the
audio file. More specifically, the output label is a binary value array with height that corresponds
to the number of frames in the audio file, and width of 88, to correspond to the 88 notes of a piano
keyboard, and the onset and offset times and the pitch values from the text files were used to create
the ground truth labels for the training audio. What we get out of the preprocessing are two arrays
for each audio file, an array representing the constant-Q transform of the audio file, and an array
representing the ground truth labels for the audio file.

Then, each of the 252 features across all frames are normalized by subtracting the minimum value
across all features, then dividing by the range of the features, and then subtracting the mean.

4 Methods

Our project is a hyperparameter study of the deep neural network architecture built by Diego Gonzélez
Morin [3]. The DNN architecture Morin built was based on the architecture recommended by Sigtia et.
al. [8]. The architecture is a 3-layer DNN with 256 units in each hidden layer, with each layer using
ReLU activation. The DNN uses Adam optimization, and the output layer uses sigmoid activation.
The output layer has a size of 88 units, to represent the 88 possible pitches of a piano keyboard.
To prevent overfitting, a dropout rate of 0.2 and early stopping were used. The loss function used
in Morin’s architecture is the mean squared error between the ground truth labels vector and the
predicted labels for each frame.

5 Experiments/Results/Discussion

Following the recommendations for a DNN model in [8], our model uses a mini-batch size of 100 for
the stochastic gradient descent updates. Due to time constraints, hyperparameter tuning was beyond
the scope of the project of the architecture’s original author. DNN’s have been shown by Sigtia et
al [8] to have poorer performance than their proposed convolutional neural network (CNN). Our
project seeks to study the effects of different hyperparameters as well as the augmentation of data, in
isolation, on the effectiveness of the model to predict the pitches of a test audio set, to see if we can
get performance comparable to that of Sigtia et al’s CNN.

The output is a binary-valued vector that represents which pitches were predicted at each frame.
The predictions were rounded to O if the output values were lower than 0.5 and rounded up to 1 if
values were greater or equal to 0.5. The evaluation metrics used were accuracy, precision, recall, and

F-measures. Below are how these metrics are calculated:

. -
. True positives(t)
P P) = 1
recision (P) ; True positives(t) + False positives(t) v
N ..
True positives(t)
Recall (R) = ’
ecall (R) ; True positives(t) + False negatives(t) ?
N -
True positives(t)
A A) = :
ccuracy (A) ; True positives(t) 4 False positives(t) + False negatives(t) (3)
2PR
F-measure (F) = PR @

where ¢t is the ¢th frame in the data input.

Figure 3: Top: Plot of Predictions for one test sample, Bottom: Plot of Ground-Truth Label (x-axis:
frame, y-axis: pitch)

For our parameter study, first we increased dropout from 0.2 to see its effect on the evaluation on the
test set:

H Model Layers Units Optimization Dropout F-measure Accuracy H

DNN 3 256 Adam 0.2 67.1 50.5
DNN 3 256 Adam 0.3 65.5 48.7
DNN 3 256 Adam 04 65.6 48.8

Another of our experiments was seeing the effect of different optimizers on the evaluation of the test
set:

H Model Layers Units Optimization Dropout F-measure Accuracy H

DNN 3 256 Adam 0.2 69.1 52.7
DNN 3 256 Adagrad 0.2 64.5 47.6
DNN 3 256 AdaMax 0.2 69.2 52.9
DNN 3 256 RMSProp 0.2 66.8 50.1

Morin’s dataset consisted only of the MUS subset of the MAPS dataset. We wanted to see the effect
on accuracy rating of adding audio recordings of isolated monophonic notes (ISOL set) from the
MAPS dataset:

H Model Layers Units Optimization Dropout F-measure Accuracy H

DNN 3 256 Adam 0.2 67.1 50.5
DNN 3 256 Adam 0.2 0 0

We also increased the number of fully connected layers to see if we can increase performance:

H Model Layers Units Optimization Dropout F-measure Accuracy H

DNN 3 256 Adam 0.2 67.1 50.5
DNN 4 256 Adam 0.2 68.2 53
DNN 5 256 Adam 0.2 68.3 54.3
DNN 6 256 Adam 0.2 68.1 55.1
DNN 7 256 Adam 0.2 65.6 60.2

Lastly, we experimented with different learning rates on the Adam optimizer:

|| Model Layers Units Optimization Dropout learning rate F-measure Accuracy ||

DNN 3 256 Adam 0.2 0.001 67.1 50.5
DNN 4 256 Adam 0.2 0.0005 68.1 52.2
DNN 5 256 Adam 0.2 0.0004 68.4 53.6
DNN 6 256 Adam 0.2 0.0002 69.1 55.1
DNN 7 256 Adam 0.2 0.0001 69.2 60.2

We received the following accuracy and loss curves for both training and validation sets on the
baseline model, which is the 3-layer, 256-unit DNN with Adam optimization and 0.2 dropout:

model accurac y model loss

6 Conclusion/Future Work

We found that the Adamax optimization got us better accuracy and a higher f-1 score. We know that
AdaMax optimization is best used for sparsely updated paramaters, such as in word embeddings.
Since our model is a DNN, and word embeddings are generally trained using LSTM, we think that
the AdaMax optimizer would work best in Morin’s LSTM implementation for AMT. This leads us to
possible hyperparameter tuning in Morin’s LSTM architecture as future work.

As would be expected, accuracy improved with an increase in the number of hidden layers in our
network.

Since Morin’s work showed that accuracy for his baseline model plateaus around 48% accuracy, our
accuracy curve, which given the limited epochs over which the model was trained, seems to portend
that our training and validation accuracy will not converge over time. This suggests underfitting.
This could be because that our training set consists solely of software-generated piano music pieces,
whereas our validation and test sets consisted of only recordings of real piano-played music pieces.
Thus, our training and validation/test sets are not coming from the same distribution. In future work,
we could improve performance by adding more real piano music pieces into the training set.

Along a similar note, adding the ISOL set to our training set dramatically decreased the accuracy of
our predictions on both the validation and test sets. This can best be explained by the fact that our
validation and training sets did not include any pieces from the ISOL set.

Our loss curve for the base line model suggests that for the Adam optimizer, we have a high learning
rate, and not a good learning rate. As our learning rate study showed, the default learning rate for
the Adam optimizer is too high, but for lower learning rates, we get improvements to our prediction
accuracy.

Sigtia’s research in [8] showed that DNNs are good classifiers for stationary data such as images,
but are not designed for sequential data like audio. This is why in the future, we would like to try
to improve the performance of our DNN by using spectrograms of the Constant Q Transform, an
example of which is shown in Figure 4, of a raw audio file as input to the neural network rather
than using matrix representation of the CQT as we did in our project. If with this approach, we still
don’t get performance close to that of CNNs, we would like to run a parameter study on the CNN
architecture to improve accuracy.

Figure 4: Time-Frequency Plot of CQ Transform of a WAV input (x-axis is time, y-axis is frequency)

7 Contributions

Maddie Wang contributed to the editing of the training part of the python scripts originally written by
Morin [3]. Susan Chang contributed to the editing of the preprocessing part of the python scripts
originally written by Morin [3].

References

[1] Bereket, M. & Shi, K. (2017) An Al Approach to Automatic Natural Music Transcription. Stanford, CA:
Stanford University.

[2] Chollet, F. & et. al. (2016) Keras. https://keras.io.

[3] Gonzélez Morin, D. (2017) Deep Neural Networks for Piano Music Transcription. GitHub repository
https://github.com/diegomorin8/Deep-Neural-Networks-for-Piano-Music-Transcription

[4] Li, L & Ni, I. & Yang, L. (2017) Music Transcription Using Deep Learning. Stanford, CA: Stanford
University.

[5] Liu, B. & Shao, L. & Wu, X. (2017) Automatic Melody Transcription. Stanford, CA: Stanford University

[6] R. Badeau, V. Emiya & David, B. (to be published) Multipitch estimation of piano sounds using a new
probabilistic spectral smoothness principle. IEEE Transactions on Audio, Speech and Language Processing

[7] Schorkhuber, C. & Klapuril, A. (2010) Constant-Q Transform Toolbox for Music Processing.

[8] Sigtia, S. & Benetos, E., and Dixon, S. (2016) An End-to-End Neural Network for Polyphonic Piano Music
Transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24(5):927-939.

[9] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

