Image To IATgX: A Neural Network Approach

Zhengqing Zhou”' Junwen Zheng*?> Zhongnan Hu *3

Abstract

Formulas are essential gradients in most of the
research articles. Among various of documen-
tation written software, IIgX provides several
options to handle images and make them look ex-
actly what you need. Hence it would be exciting
if we could build an OCR that converting image
of formula to latex code. To construct and train
such a model requires techniques in Computer
Vision and Neural Language Processing. In this
project, we addressed this task with a Densely
Connected Network encoder, an RNN decoder
with gated recurrent unit (GRU) and an attention
model. This model is trained on a open source
dataset called IM2LATEX-100K. We evaluate our
model against several metrics, and compiling the
predicted code to generate new formulas and com-
paring them to the ground truth. We achieve very
good performance with a BLEU score of 84% and
an Edit distance of 85%.

1. Introduction

Consider the situation that you are writing a paper and you
want to quote some math formulas from other papers, it
would be quite time-consuming if you write the I&IEX code
of the formulas by hand. Motivated by this scenery, a very
natural question is that if there is way to convert math for-
mula images to ISTEX code. This lead us to the area of image
captioning, which is the process of generating textual de-
scription of an image. Optical character recognition (OCR)
is most commonly used to recognize natural language from
an image. Problems like OCR that require joint processing
of image and textual data have recently seen increased re-
search interest due to the development of deep learning in
these two domains. For instance, recent advances have been

*Equal contribution 'Department of Mathematics, Stanford
University, CA, USA ?Department of Civil and Environmen-
tal Engineering, Stanford University, CA, USA *Department of
Mechanical Engineering, Stanford University, CA, USA. Corre-
spondence to: Zhengqing Zhou <zqzhou@stanford.edu>, Jun-
wen Zheng <junwenz@stanford.edu>, Zhongnan Hu <chris-
nan@stanford.edu>.

Ju= —se‘(‘m + W;ef‘i),

predicted latex codes :

J_{\mu}=-se_{\mu}"~{(0)}+\gamma _{i}e_{\mu} " { (1)},

Visualization of the latex codes :
- 0) i)
Jy=—sey +riey,

J_{\mu}=-se_{\mu} " {(0)}+\gamma _{i}e_{\ma} "~ { (i)},

J,, = —se}f’) + 7,-29,

Figure 1. Example of input image and output IXTEX codes

made in the areas of handwriting recognition (Jaderberg
et al., 2014), OCR in natural scenes (Ciresan et al., 2010),
(Wang et al.) and image caption generation (Karpathy & Li,
2014).

In this project, our main focus is to build an OCR for math
expressions. Unlike the traditional approaches that assumed
expertise in the language from the images, we are seeking
for a supervised model that can learn to produce correct
ETEX code from an image, without requiring any knowledge
of the underlying language, and is simply trained end-to-end
on real-world data.

2. Related Work

Recent years, many breakthrough has been made in Com-
puter Vision and Neural Language Processing. For instance,
papers like (Karpathy & Li, 2014) and (Karpathy et al.,
2015) proposed data driven approach to learn an encoded
version of the input image which is then decoded to gener-
ate a textual output. Those promising data-driven methods
gained can be applied to a wide range of datasets, since they
do not require heavily preprocessing inputs or professional
knowledges of a specific domain.

When narrowing down to the problem of “Image to Latex”,
it is important to combine sequence-to-sequence model with
the techniques in Image Captioning. One exited break-
through has been made by (Xu et al., 2015), they encoded
the image with a CNN, and then decoding the CNN output
step by step. At each step, they generated a new word of
caption and then fed it to the next step. Another enlighten-
ing technique was that they introduced an attention model,
which enables the decoder at each step to take a look at the
encoded image.

Image To IXTEX: A Neural Network Approach

Finally, a recent work from (Deng et al., 2016) took the sim-
ilar approach as (Xu et al., 2015) and successfully applied
it to the generation of Latex code from images of formulas.
They built a nice dataset IM2LATEX-100K (Kanervisto,
2016) and achieve a very promising performance in test
results. Our work is based on their paper, and we were
trying to change the architecture of CNN encoder and RNN
decoder so as to achieve a better performance.

3. Data Set and Features
3.1. Raw Data

We used an open source dataset called IM2LATEX-100K
(Kanervisto, 2016) as our raw dataset. This is a prebuilt
dataset with a lots of real-world images of mathematical
formulas in IZTEX for OpenAl’s task for “Image to Latex
system”. Specifically, the IM2LATEX-100K dataset pro-
vides 103,556 different IATEX math equations along with
rendered pictures. The formulas were extracted from pa-
pers in arXiv, which was a repository of electronic preprints
approved for publication after moderation. IZTEX sources
were obtained from tasks 60,000 papers. The around 100
thousand formulas were rendered in a vanilla ISIiEX environ-
ment. Rendering was fulfilled with pdflatex and formulas
that failed to compile were excluded. Then the rendered
PDF files were converted to PNG format. The raw dataset
was separated into training set (83,883 equations), valida-
tion set (9,319 equations) and test set (10,354 equations) for
standardized experiment setup.

3.2. Data Preprocessing

The images in the raw dataset IM2LATEX-100K (Kan-
ervisto, 2016) contain a ISIgX formula rendered on a full
page. To accelerate training, we need to pre-process the
images. Firstly, we cropped the formula area, and group im-
ages of similar sizes to facilitate batching. The bucket sizes
were (160, 64), (224, 32), (320, 64), (128, 64),(160, 32),
(480, 64), (384, 64), (224, 64), (128, 32),(480, 32), (384,
96),(384, 32), (192, 32), (320, 32), (256, 32), (256, 64),
(192, 64), (480, 128), (480, 160). Then we prepared train,
validation and test files. We excluded large images from
training and validation set, and we also ignored formulas
with too many tokens or formulas with grammar errors.

After that, we tokenized the formulas into vocabulary dictio-
nary. We also added the special tokens PAD, START, END,
and UNK. PAD token was added to pad the formulas to
have the maximum lenght of 150 to faciliate training.

4. Methods

Our model combined several components from computer
vision and natural language processing. First of all it ex-

tracted formula images by using a convolutional network,
and then encoded the output of convolutional network by a
RNN. Finally, it fed the encoded feature to a RNN decoder
with a visual attention mechanism.

Encoder

Convolutional Network

Ry
X <—m_\\\\

Figure 2. Network Architecture

4.1. Convolutional Network
4.1.1. BASELINE CNN MODEL

For the baseline model, we aimed to reproduce the model in
(Deng et al., 2016). The visual features of an image were
extracted with a multi-layer convolutional neural network
interleaved with max-pooling layers. We did not use final
fully-connected layers, since we wanted to preserve the
locality of CNN features in order to use visual attention.
The CNN took the raw input R *"W and produced a feature
grid V of size D x Hy x Wy, where ¢ denotes the number
of channels and Hy and W, were the reduced sizes from
pooling. More details of the CNN architecture are shown in
Table 1.

Type Filter Size | # channels | Stride | Padding | Batch Normal
Convolution 1 3x3 64 £} SAME No
Max pool 2 2x2 64 (2,2) | VALID No
Convolution 2 3x3 128 1,1 SAME No
Max pool 2 2x2 128 (2,2) | VALID No
Convolution 3 3x3 256 L1 SAME Yes
Convolution 4 3x3 256 1,1 SAME No
Max pool 3 1x2 256 (1,2) | VALID No
Convolution 5 3x3 512 (1,1 SAME Yes
Max pool 4 2x1 256 (2,1) | VALID No
Convolution 6 3x3 1024 {L1) SAME Yes

Table 1. Baseline CNN Architecture

4.1.2. DENSENET MODEL

DenseNet (Huang et al., 2016) is a network that connects
each layer to every other layer. For each layer, we used the

Image To IXTEX: A Neural Network Approach

Input Image

Dense Block 2
W b T

Dense Block 1
' T Tl

f=

UORN|OAUOD
Buijood

6u1j004

Dense Block 4
R0 e

Dense Block 3

Rererere

CNN

Output

Y

Buj00d
BUIjcog

Figure 3. Deep DenseNet with four dense blocks

feature maps of all previous layers as inputs, and we also
used its own feature maps as inputs of all subsequent layers.
One motivation of introducing DenseNet was that we found
it hard for the Baseline CNN model to distinguish the differ-
ence of some tiny symbols (say subscript or superscript, see
Figure 4). DenseNet have the following advantages:

(1) Strengthen the feature propagation.
(2) Alleviate the vanishing gradient problem.

(3) Substantially reduce the number of parameters.

orig: f_{i j} = \partial_{ifa_{j}*{\rm s}}-\partial_{jla_{i}*{{\rm s}}, \label{za3a}

_ 8 8
fij = Biaj — Bjai,

predicted: f _{ij}=\partial _{i}a_{j}*{s}-\partial _{j}a_{i}*{8}, (-

_ 8 8
fij = Oiaj — 6jai y
Figure 4. Fail to distinguish superscript s and 8

There are two substantial gradients in DenseNet model. The
first one is called the “Dense Block™, there are four bottle-
neck layers in a “Dense Block”, each layer took all preced-
ing feature maps as input and concatenated into a tensor.
The second gradient is called the “Transition Layer”, which
are in between two adjacent dense blocks. In this layer, we
applied Batch Normalization on the output of the preceding
“Dense Block”, and then we applied Max-Poolings to obtain
the input of the subsequent “Dense Block”. In (Huang et al.,
2016), researchers also compressed feature-map via con-
volution in the “Transition Layer”. However, due to small
model size, we don’t have to do this. The network structure
of DenseNet is shown in Figure 3.

4.2. Encoder

We used a recurrent neural network (RNN), which recur-
sively maps a input vector and a hidden state to a new hidden
state. Among different variants of RNN, gated recurrent unit
networks (GRUs) were chosen, because it has been proved
to be effective for many NLP tasks, especially for small
dataset. The size of feature map from CNN output was 512,
and the size of GRU cell size was 256. Word embedding was

also applied, which represents different aspect of a token,
so that similarity feature of tokens could be learned by the
network. The dimension of word embedding was 80. The
input of encoder will be the output of CNN network with
the shape of (batch size, 1 x original height, %x original
width, 512). The maximum length of RNN encoder was
size of output height times width (W’ x H')

4.3. Decoder

Among sequence-to-sequence models, we chose the atten-
tion model to focus on contents which might be useful for
prediction. As shown in Figure 7, the target markup tokens
were generated by a decoder that built by a sequence of
annotation V. We were able to produce the I£TEX tokens
with a recurrent neural network once receiving the feature
map of size (N, H, W, C). This decoder was trained as a
conditional language model to give the probability of the
next token given the history and the annotations.

After computing an attention vector at each time step by the

decoder, it produced a distribution with a recursive formula:

PWe) = f(Ye—1,hi—1,¢)

where p is the distribution, y;_; is the input previous token,
h;_1 is the hidden state of the GRU, ¢, is an attention vector.

Moreover, another output state o,_; was used to compute
the distribution probability over the formula as follows.

hy = GRU(h¢—1, [EYt—1,0¢-1])

¢; = Attention(hy, V)
0 = tanh(WC[ht, Ct])

p(Yss1ly1,- -+ 5 Ys, V) = softmax(W°"o;)

where E is an embedding matrix and W are matrices.

Since c; only stands for the attention vector, it can not show
the cell state of the GRU. Therefore, we had to seek it by
researching the interior structure of GRU.

After applying the knowledge of attention model, we were
able to enhance the performance of the decoder. In this
project, soft attention mechanism was chosen. According
to the attention mechanism published from (Luong et al.,

Image To IXTEX: A Neural Network Approach

2015), we applied the formulas below to finish the decoding
process.

el = BTtanh(Wyhe_1 + Woy;)
o' = softmax(e*)

W'xH'

¢ t
c = E o, v;
i=1

4.4. Training

The complete model was trained end-to-end without given
any knowledge about the markup language or generation
process. Cross-entropy loss for a sequence of logits were
used for our model. Learning rate was initialed to be 0.001
and decayed by one-tenth if the loss didn’t reduce for two
epoch. In total, we ran for 40 epochs. For training set, the
loss for 4-block DenseNet model was decreased from 3 to
0.008.

5. Experiments / Results / Discussion
5.1. Hyperparameters

We kept most of the hyperparameters the same as those
in (Deng et al., 2016) model for RNN part. The batch
size was set to be 20 due to memory in GeForce GTX
1080 Ti GPU. To compare the baseline CNN model, the
output of CNN was controlled to be in the same height,
width and channels. Given the output constrain and keeping
the number of bottlelayer same in each dense block, we
have tuned the number of dense block and growth rate in
DenseNet model. 3-block densenet model was developed
with growth rate of 16/32/64; 4-block densenet model was
developed with growth rate of 16/32/32/32.

Model BLEU score | Edit distance
(Deng et al., 2016) CNNEnc 0.75 0.61
Baseline CNN 0.77 0.76
DenseNet(3 blocks) 0.80 0.79
DenseNet(4 blocks) 0.84 0.85

Table 2. Experiment results

5.2. Accuracy

To evaluate our result, we tracked the accuracy of predicted
latex codes and the true latex codes by the BLEU score
(Papineni et al., 2002). We also calculated the edit distance
on the text (Levenshtein distance), between the predicted
latex code and the true label. Edit distance is the percentage
of the reconstructed text that matches the original.

Both the BLEU score and edit distance of DenseNet models
were better than CNNEnc (Deng et al., 2016) and baseline

CNN model, because bottleneck layers were closely con-
nected and more features from shallower layers could be
directly transferred into deeper layers. Please see more de-
tails in Figure 5 and Table 2. The results of 4-block densenet
model was slightly better than 3-block one.

0.9

score

BLEU

02r —@— Network with DenseNet with 4 blocks | 7|
@ Network with DenseNet with 3 blocks
~—8— Network with simple CNN

0 5 10 15 20 25 30 35 40
Numbers of Epoch

Figure 5. BLEU score

0.9

Edit distance

03

—®@— Network with DenseNet with 4 blocks
~—@— Network with DenseNet with 3 blocks
~—8— Network with simple CNN

02 . . L
0 5 10 15 20 25 30 35 40
Numbers of Epoch

Figure 6. Edit distance

5.3. Training Efficiency

Showing in Figure 5 and Figure 6 that Densenet model
reached best BLEU sore and edit distance earlier, we found
that training for DenseNet model was more efficient com-
pared with baseline CNN model. There were close connec-
tions between bottleneck shallow and deep layers in dense
block. During the back propagatation, the weights of layers
could have more updates compared with traditional convo-
lution. Thus, within one epoch, more information could be
captured by densenet model, resulting in more iteration of
training and tunning cycle in same period of time.

Image To IXTEX: A Neural Network Approach

Input Image :
fij = Bia} — G5a3,

predicted latex codes :
f _ {ij}=\partial _ {i}a_{3J} "

Visualization of the latex codes :
j;j = 6,-ajs- = ajaf,
Input Image :
o ’
Ju = —sef,) + 'nef"),

predicted latex codes :

J_{\mu}=-se_{\mu} " {(0)} + \gamma _

Visualization of the latex codes :

J, = —se,(,o) + yie,(f),

{ s} - \partial _ { j } a

_{i}r " {s},

{i}Ye {\mu} "~ { (i)},

Figure 7. Some predicted results of DenseNet(4 blocks). Comparing the first result to Figure4, we found that our new model could come
up with the correct superscript s. The second example also showed that our new model had reasonable well performance in dealing with

tiny symbols in subscript and superscript.

5.4. Learning Rate

From Figure 5 and Figure 6, we observed that DenseNet has
a larger drop in both BLEU performance and edit distance,
when learning rate changed, compared with baseline CNN,
so DenseNet seemed to be more sensitive in learning rate
decay. Therefore, choosing a more suitable decay function
for DenseNet might enhance the training efficiency. We
also found that 4-block densenet model was slightly more
sensitive than 3-block one. More attention on selecting
appropriate learning rate function shall be paid to deeper
densenet model.

5.5. Overfitting

From the data collected from model output, the edit dis-
tance of DenseNets was around 85%, which was 10% more
than normal CNN, which means by using DenseNets, we
were able to achieve a lower error. We assumed that it was
due to the good usage of raw data and interior connections
among different layers, a tendency of DenseNet-BC bottle-
neck and compression layers were less overfitting and able
to reduce error dramatically when compared with normal
constitutional neural networks.

6. Conclusion / Future Work

This paper presents an improved implementation of image
captioning applied to Latex generation from raw image. A
new convolutional network using Densenet was introducted
and it enhanced the performance in terms of prediction
accurancy and computational efficiency.

For future work, firstly, we’d like to apply beam search to
improve the RNN network, which as an approximate search
often works far better than the greedy approach. The result
is predicted to be no worse than current performance at the
expense of computational effort. Secondly, our research can
be scaled from printed mathematical formulas images to the
hand written mathematical formulas images. Surprisingly,
we were overwhelmed by the request for this function from
audiences during our presentation.

7. Team Contribution

All three members of this team work together and contribute
equally to this project in data prepossessing, algorithm de-
signing, model designing, model training and report writing.

Image To IXTEX: A Neural Network Approach

References

Ciresan, Dan Claudiu, Meier, Ueli, Gambardella,
Luca Maria, and Schmidhuber, Jiirgen. Deep big sim-
ple neural nets excel on handwritten digit recognition.
CoRR, abs/1003.0358, 2010. URL http://arxiv.
org/abs/1003.0358.

Deng, Yuntian, Kanervisto, Anssi, and Rush, Alexander M.
What you get is what you see: A visual markup de-
compiler. CoRR, abs/1609.04938, 2016. URL http:
//arxiv.org/abs/1609.04938.

Huang, Gao, Liu, Zhuang, and Weinberger, Kilian Q.
Densely connected convolutional networks. CoRR,
abs/1608.06993, 2016. URL http://arxiv.org/
abs/1608.06993.

Jaderberg, Max, Simonyan, Karen, Vedaldi, Andrea,
and Zisserman, Andrew. Deep structured output
learning for unconstrained text recognition. CoRR,
abs/1412.5903, 2014. URL http://arxiv.org/
abs/1412.5903.

Kanervisto, Anssi. im2latex-100k , arxiv:1609.04938,
June 2016. URL https://doi.org/10.5281/
zenodo.56198.

Karpathy, Andrej and Li, Fei-Fei. Deep visual-semantic
alignments for generating image descriptions. CoRR,
abs/1412.2306, 2014. URL http://arxiv.org/
abs/1412.2306.

Karpathy, Andrej, Johnson, Justin, and Li, Fei-Fei. Visu-
alizing and understanding recurrent networks. CoRR,
abs/1506.02078, 2015. URL http://arxiv.org/
abs/1506.02078.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christo-
pher D. Effective approaches to attention-based neural
machine translation. CoRR, abs/1508.04025, 2015. URL
http://arxiv.org/abs/1508.04025.

Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu,
Wei-Jing. Bleu: A method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
ACL °02, pp. 311-318, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics. doi: 10.
3115/1073083.1073135. URL https://doi.org/
10.3115/1073083..1073135.

Wang, Tao, Wu, David J., Coates, Adam, and Ng, Andrew Y.
End-to-end text recognition with convolutional neural
networks.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun,
Courville, Aaron C., Salakhutdinov, Ruslan, Zemel,

Richard S., and Bengio, Yoshua. Show, attend and
tell: Neural image caption generation with visual at-
tention. CoRR, abs/1502.03044, 2015. URL http:
//arxiv.org/abs/1502.03044.

