[

Deep Learning for Partial Differential Equations
(PDEs)

Kailai Xu Bella Shi Shuyi Yin
kailaix@stanford.edu bshi@stanford.edu syin3@stanford.edu
Abstract

Partial differential equations (PDEs) have been widely used. However, solving
PDEs using traditional methods in high dimensions suffers from the curse of
dimensionality. The newly emerging deep learning technqiues are promising in
resolving this problem because of its success in many high dimensional problems.
In this project we derived and proposed a coupled deep learning neural network
for solving the Laplace problem in two and higher dimensions. Numerical results
showed that the model is efficient for modest dimension problems. We also showed
the current limitation of the algorithm for high dimension problems and proposed
an explaination.

1 Introduction & Related Work

Solving PDEs (partial differential equations) numerically is the most computation-intensive aspect of
engineering and scientific applications. Recently, deep learning emerges as a powerful technique in
many applications. The success inspires us to apply such a technique to solving PDEs. One of the
main feature is that it can represent complex-shaped functions effectively compared to traditional
finite basis function representations, which may require large number of parameters or sophisticated
basis. It can also be treated as a black-box approach for solving PDEs, which may serve as a first-
to-try method. The biggest challenge is that this topic is rather new and there are few literature (for
some examples on this topic, see [2]-[7] that we can refer to. Whether it can work reasonably well
remains to be explored.

L(0) = (Li(z,t]0) - f)* M
reads to a very accurate solution (up to 7 digits) to
Lu=f @

where L is some certain differential operator.
Since 2017, many authors begin to apply deep learning neural network to solve PDE. Raissi, et al[3]
considers,
ug = N(t, ¢, g, Ugzy -..), [i=ur — N(t, @, Uy, Ugy, --.) 3)
where u(x, t) is also represented by a neural network. Parameters of the neural network can be learnt
by minimizing
N
> (u(,2’) '] + |f(#,2")]?) ©)
i=1
where the term |u(t?, z%) — u?|? tries to fit the data on the boundary and | f(¢¢, z*)|? tries to minimize
the error on the collocation points.

LE. Lagaris et al has already applied artificial neural network to solve PDEs. Limited by computational
resources they only used a single hidden layer and model the solution u(z, t) by a neural network
a(z, t(0)).

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Dataset and Features

The data set is generated randomly both on the boundaries and in the innerdomain. For every update,
we randomly generate {(z;,v:)},, (z;,y;) € O and compute g; = gp(z;,y;). The data are then
fed to (2) for computing loss and derivatives.

For every update, we randomly generate {(7i,)} 1, (z;,v:;) € Q and compute f; = f(zi,y:).
The data are then fed to (1) for computing loss and derivatives.

x
X x
x x
X x
x X
x X x
x x x
x X X
X
x
x x
x
X
X X
x x X

Figure 1: Data Generation for Training the Neural Network. We sample randomly from the inner
domain (2 and its boundary 0f2. Here X represents the sampling points within the domain and o
represents the sampling points on the boundary.

3 Approach

Our main focus is elliptic PDEs, which is generally presented as:

0 ou 0 ou .
—£(p(x,y)%) ——a—y(cJ(I,y)a—y) +r(z, y)u = f(z,y), in Q
u=gp(r,y), onQp (5)
Ou Jy Ou Ox B
p(, y)%g — gz, y)6_y$ +c(z,y)u = gn(z,y), onQy

Inthe case p = ¢ = —1,r = 0,09Qp = 02, we obtain the Poisson equation:

{Au: f, inQ

u=g¢gp ondf ©

In the case f = 0, we obtain the Laplace equation.
Our algorithm for solving Poisson equation (12) is as follows: we approximate v with

u(@,y; w1, w2) = Az, y;w1) + B(z,y) - N(z,y;w2)
where A(x, y; w1) is a neural network that approximates the boundary condition

Az, y; w1)|oo™ 9p)

and where B(z,y) satisfies B(x,y)|sa= 0. Our network looks like this fig. 2. To evaluate the
effectiveness of our method, we will report three error metrics, which can be used as indicators for
different purposes.

2
Bounding loss Ly =)y .%, (A(-Tz',yﬁwi) - “i)

2
PDEloss L,=>.%, (AUh(wz‘,yi;w17w2) = fZ)

Lyerror Loy = \/% 7o lun (@, v wr, we) — u(z, vi) |2

Input ;) y

Boundary Network A(x, y; w)
Approximation on the boundary
PDE Network N(x,y; w)
Coupled with A(x, y; w)
Approximation within the domain
Loss Function

Models

Boundary Network

PDE Network

T4 ((90)i — e yD) + X (i —

Au(thJ)z

Y ™
% \
Output: A(z, y; w)

+
\/’

1 T, y; w)
2

H |

= Output: N(z,y;w)

Training Algorithm (GAN style):
for number of training iterations
for k steps do
sample minibatch on the boundary
train the boundary network
end for
sample minibatch within the domain
train the PDE network
end for

Figure 2: The structure of our network. We proposed this idea at the inspiration of GAN, where we
update the boundary network for several times before we update the PDE network once. Our loss
function is made up of two components: boundary loss and interior loss.

4 Experiments/Results/Discussion

To demonstrate the effectiveness of our method, we applied method of manufactured solution (MMS),
i.e. construct some equations with analytic solutions and then compare the numerical solution with
the analytic solutions. We consider problems on the unit square 2 = [0, 1]?, and the reference
solution is computed on a uniform 50 x 50 grid. The test is on well-behaved solutions, solutions with
peaks and some other less regular solutions. All of them were manufactured.

4.1 Example 1: Well-behaved Solution

Consider the analytical solution

€ [0,1)? 8)

u(z,y) =sinmxsinmy, (z,y)
then we have
f(z,y) = Au(z,y) = —2n° sinmzsin Ty 9)

and the boundary condition is zero boundary condition.

The hyper-parameters for the network include ¢ = 1075, L = 3, nl] = nl? = nl3] = 64. In
figures below, the red profile shows exact solutions while the green profile shows the neural network
approximation. Figure 3 (a) shows the initial profiles of the neural network approximation, while
fig. 3 (c) shows that after 300 iterations it is nearly impossible to distinguish the exact solution and
the numerical approximation.

4.2 Example 2: Solutions with a Peak

Consider the manufactured solution

u(z,y) = exp[—1000(z — 0.5)% — 1000(y — 0.5)%] + v(z, y) (10)
where v(x, y) is a well-behaved solution, such as the one in section 4.1. Figure 5 shows the plot of
exp[—1000(z — 0.5)2 — 1000(y — 0.5)?]. Very large Laplacian at some point can be difficult for the

approximation. As an illustration, let v(z,y) = sin(mwz). If we do not do the singularity subtraction
and run the neural network directly, we obtain fig. 5. We see that the numerical solution diverges.

Iteration 50 Iteration 300

(@) (b) (©)

Figure 3: Evolution of the neural network approximation. At 300 iteration, it is hard to distinguish
numerical solution and exact solution by eyes.

L

200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Reration teration

0 200 400 600 800 1000 1200 1400 o
teration

(a) (b) (©)

Figure 4: Loss and error of the neural network. For L;, we have adopted an early termination strategy
and therefore the error stays around 10~° once it reaches the threshold. The PDE error L; and Lo
error approximation keeps decreasing, indicating effectiveness of the algorithm.

Iteration 50

Iteration 10

(@) (®) (©)

Figure 5: Plot of exp[—1000(x — 0.5)% — 1000(y — 0.5)?], which has a peak at (0.5, 0.5), and the
evolution across iterations. This extreme behavior proposes difficulty for neural network approxi-
mation, since the Laplacian around (0.5, 0.5) changes dramatically and can be very large. Solution
converges on the boundary after several iterations but because of the peak, it diverges within the

domain.

4.3 Example 3: Less Regular Solutions

Consider the following manufactured solution
u(z,y) = y*° (11

the derivative of the solution goes to infinity as y — oo, which makes the loss function hard to
optimize. In the meanwhile, we notice that for any interval [d, 1], > 0, the derivatives of u(x,y)
on [0,1] x [d, 1] is bounded, that is to say, only the derivatives near y = 0 bring trouble to the
optimization. Figure fig. 6 shows the initial profile of the neural network approximation. See
Section 4.1 for detailed description of the surface and notation. Even at 1000 iteration, we can still
observe obvious mismatch between the exact solution and the numerical solution (fig. 6).

Iteration 50 Iteration 1000

(@) (b) ©

Figure 6: Numerical solution at iteration 1000. Near y = 0, there is data mismatch between numerical
solution, exact solution and network approximation. At y ~ 0, the derivative g—; — 00. We can see
the distortion between approximation solution and exact solution near y = 0.

4.4 Higher dimensions

In the plots presented, we observe that, when dimension is small, increasing the number of layers
does not help with the ultimate performance of our approximation. The convergence speed, however,
increased when there are more layers in the network. As we see, this holds true for (a) and (b), where
dimensions are 2 and 5 (in fig. 7).

Our approximation for high dimensions is constrained by computation power. In 7D approximation,
all settings show promises, as the Ly loss is dropping. But we do not witness the convergence because
30K iterations is not enough. For 10D domain approximation, it is even worse, because the loss
seems not to reduce at all. However, this result is reasonable, since high dimensional curve itself is
complex and difficult to approximate, and our network may simply do not have enough parameters to
finish this task. We are happy to share our results of higher dimension explorations upon request.

1000 2000 3000 4000 5000 6000 7000 8000 0 2500 5000 7500 10000 12500 15000 17500 20000 5000 10000 15000 20000 25000 30000
Mteration eration teration

(a) (b) (©)

Figure 7: Performance of approximation for domains in different dimensions. In low dimensional
problems, it converges fast, and the more layers we have, the faster convergence we observe; the
number of layers do not affect the ultimate performance. The higher the dimensions are, the longer it
takes to train to converge. Notice in (¢), for 7D domain approximation, we cannot see the convergence
in 30K iterations, but in general the loss is being reduced. For even higher dimensions, the converge
will be much slower.

5 Conclusion/Future Work

In this project, we proposed novel deep learning approaches to solve the Laplace equation,
Au=f, in
’ 12
{u =gp ondfd 12

We also showed results for different kinds of solutions, and discussed the high dimension cases as
well. In the future, we will generalize results to other types of PDEs, and also investigate algorithms
for ill-behaved solutions, such as peaks, exploding gradients, oscillations, etc.

6 Contributions

Kailai worked on mathematical formulation of the methods, while Bella and Shuyi worked on the
model tuning and realization. The source code was developed from scratch by us and can be found at
https://github.com/kailaix/nnpde.

References

[1] Wang, Zixuan, et al. Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations.
Journal of Computational Physics 314 (2016): 244-263.

[2] LE. Lagaris, A. Likas and D.I. Fotiadis. Artificial Neural Networks for Solving Ordinary and Partial
Differential Equations, 1997.

[3] Maziar Raissi. Deep Hidden Physics Models, Deep Learning of Nonlinear Partial Differential Equations,
2018.

[4] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations, 2007.

[5] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations, 2017.

[6] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net, Learning PDEs from data, 2018.

[7] Modjtaba Baymani, Asghar Kerayechian, Sohrab Effati. Artificial Neural Networks Approach for Solving
Stokes Problem, Applied Mathematics 2010.

[8] M.M. Chiaramonte and M. Kiener. Solving differential equations using neural networks.

[9] Peng, Shige, and Falei Wang. BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Science
China Mathematics 59.1 (2016): 19-36.

