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Deep Climate

Using CNNs to Fine-Tune Climate Ensembles

Brian Reed

Abstract—While climate models have significant predictive
power over multidecadal, regional scales, they become less
accurate when trying to make predictions over smaller temporal
or spatial scales. Here we explore using a convolutional approach
to combine the predicted temperatures from an ensemble of
climate models in a way that better captures observed spatial
variability. Our model is based on the u-net architecture, and in
this first pass, we use daily hindcast and observed temperature
from 1900-2005, though we explore ways to increase the temporal
scale. We find that the convolutional approach greatly reduces
the mean-squared prediction error when compared to a more
traditional approach, averaging the predictions of the models in
the ensemble.

I. INTRODUCTION

The scientific community is in agreement that human
emissions of greenhouse gases are forcing the Earth out of
the historical range of climate variability, into a generally
hotter and wetter world. These results are robust when
averaged over large spatial and temporal scales, but the
global, multidecadal trends mask a certain amount of noise.
It is one thing to robustly forecast global trends, and another
to predict how the changing climate will impact conditions in
specific locations, or how it will impact specific Earth system
processes, or even how it will change intra- and interannual
temperature and precipitation patterns in the short term. For
this reason, two main areas of research in the earth systems
modeling (ESM) community are near-term and regional
climate prediction. These are both notoriously difficult, yet
crucially important for policymaking.

In this paper, we explore a convolutional ensemble approach to
making short-term, regional climate projections more spatially
accurate. We take as input the predicted daily maximum
temperature from three climate models [2], normalize the
input data for each day, feed this into a u-net architecture,
and try to predict the normalized climate temperature in each
pixel of the image[1]. In this initial application, we focus on
a region that includes most of the landmass of the continental
United States, as well as parts of Northern Mexico and
Southern Canada. North America.

While the results from these climate models are typically
averaged over longer periods of time, on the order of years to
decades, we focus on daily images in order to get the most
information on the spatial biases of the model. However,
we begin to explore an approach to look across longer time
horizons as well.

We find that our approach greatly reduces the error relative
to the common practice in ensembling, which involves taking
an average over different model inputs. It is worth further
exploring the extent to which this approach can be used to
fine-tune climate predictions.

II. RELATED WORK

The classic ESM approach involves using fluid and
thermodynamic equations to predict future states of the
atmosphere, which can be translated into such variables as
expected surface temperature and precipitation. In order to
gain a sense of the range over different initializations and
parametrizations, climate scientists create an ensemble of
results from different model runs. One such type of ensemble,
which we draw from here, is a multi-model ensemble, which
compares results from a collection of different models, often
from different modeling centers, in order to get a sense of the
variation in results among the modeling community [5]. There
is no standard procedure for using these ensembles to generate
a single forecast, though researchers have experimented with
calculating weighted averages and selecting the model that
most accurately replicates the past.

In contrast to the classic ESM approach, individuals
with expertise in statistics, computational math, and computer
science have begun to harness the growing body of
observational data on the Earth system to gain insights into
how the Earth system functions. Due to the rise of remote
sensing technologies, there is an ever-increasing amount of
said data. Researchers have used it to investigate such tasks
as long-term forecasting [11] and statistical downscaling [9],
[10]. There has even been discussion of creating a global
ESM strictly from data [7], although in order for such a
model to be accepted in the ESM community, it would likely
have to meet several boundary conditions prescribed by laws
of thermodynamics and fluid mechanics.

In this work we seek to bridge these two approaches,
using a u-net architecture to improve the spatial accuracy of
an ensemble of existing climate models.

III. OVERVIEW OF THE DATASET
A. Data Sources

The historical model hindcasts come from global circulation
models compiled for the Coupled Model Intercomparison
Project (CMIPS5), while the historical observational data comes
from Berkeley Earth[2][1]. The CMIP models are the gold
standard for climate models, as they form the foundation
for the projections in the Assessment Reports put out by
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the UN-founded Intergovernmental Panel on Climate Change
(IPCC). We use the CMIP models developed by NASA GISS,
Environment Canada, and the Community Climate System.
While the Earth Systems Grid Federation (ESGF) provides
a centralized repository for the model output, different data
centers still put their data in slightly different formats, so
some standardization is needed to compare results across
models. We make use of wget scripts provided by the ESGF
to download the data for a collection of models from 1900-
2005, while we download the observational data directly from
Berkeley Earth’s website. The files are in a .nc format and can
amount to several gigabytes of data from each data source over
the entire time period.

B. Data Processing & Input Architecture

After downloading the relevant .nc files, we crop the data
spatially and temporally to focus on the continental US from
1900-2005. For each day, for each data source, we generate
a map of the estimated daily maximum temperature over the
continental US and save this as an image. For each day, we
demean the data and divide by the standard deviation of the
observed temperatures within the given window. This should
help to remove some aspects of seasonal variations, as well
as year-to-year changes in temperature. In future work, it
would be interesting to directly predict temperature. For now,
though, the standard deviation approach provides insight into
how well the u-net approach can help reduce spatial biases.

We convert each image to grayscale and stack the results
from different models as channels in one image. Here we
experiment with two different architectures as pictured in
Figure 1.

Architecture 1: We stack the results from the three
models for a given day into one image and try to predict the
one day observed temperature.

Architecture 2: We stack the results from the three
models for 5 days and try to predict the 5 day moving
average temperature.

After processing and stacking the data, the resulting
ground truth images are 102 x 52 x 1, while the model images
are 102 x 52 x (m x d), where m is the number of models
(here, 3) and d is the number of days. The images are this
small in order to facilitate running a model with more than
30,000 of them. While the pixel size may seem relatively
small, the model outputs themselves are 1 degree cell by 1
degree cell, so we do not cut down on the resolution of the
models. Sample GCM outputs, which are the inputs to our
u-net model, are below.

C. Train, Validation, and Test Sets
We start with 1 image for 365 days across 105 years.! We
shuffle the data from 1900 to the end of 1999 across all time

The climate models do not include leap years, so we remove the leap days
from the observational data set as appropriate.
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Fig. 1. Sample of different architectures explored in the model.

periods before splitting into a training set, consisting of 32,850
images, and a validation set, consisting of 3,650 images. We
set aside the data from 2000-2005, consisting of 2,190 images,
for the test set. This split is captured in Figure 2.
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Fig. 2. Train, validation, and test set split.

Although this set-up means that that our test set is from
a different distribution than our training and validation sets,
it allows us to mimic the classic goal in climate research:
prediction. In this set-up, the data from 1900-1999 reflect what
we know about past climate, while the data from 2000-2005
serves as our prediction period.

IV. METHODS

To combine the model inputs, we use a simplified version
of a u-net convolutional architecture. The architecture was
originally produced for biomedical image segmentation [6].
The classic u-net architecture consists of a sequence of
convolutions followed by a pooling layer, repeated several
times, followed by a sequence of up-convolutions and
convolutions to expand the output and recover a segmentation
map. For our purposes, the key is that its output can be
visualized as an image that is on a similar scale as the input
images. This will allow us to map the model output and
visually compare the results across with both the ground truth
and our input images.

Our implementation relies on the Unet-ants repo created
by Nate Cullen [8].2 The general architecture of the unet
implementation I run is below in Figure 3 below, showing
sample inputs and output images as well. This is a take on
the representation in the original paper by Ronneberger, [6],
where here we represent each layer as the layer type.

We try different model architectures by altering the number
of days that we include in an input image, as discussed
previously in Section III-B.

The loss function we use is the MSE, given below. In

2This repo relies on keras[3] and uses a tensorflow backend [4].
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Fig. 3. Simplified representation of our model, with the middle representation
of u-net based loosely on the depiction in [6].

general, it sums over every pixel j € J the difference
between the predicted pixel, ¢;, and the ground truth pixel,
y;. Here we have a number of samples m as well, over
whatever set we are training.
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This function allows us to minimise the pixelwise squared
difference between images, so that we penalize over- and
under-predictions equally. We will also look maps of the sum
of the straight difference between the ground truth and the
prediction over our test set, to look at whether the model
routinely over- or under-predicts values in given regions.

We train the model using an Adam optimizer and we
experiment with several learning rates, as discussed below.

V. EXPERIMENTS

In order to expedite the training and tuning process, we
simultaneously run the model on three p2.xlarge instances
in Amazon Web Services, and we conduct several runs on a
p3.2xlarge as well.

In our initial search, we experiment with 3 learning
rates across what we will refer to as a “1 layer” model and,
separately, a “2 layer” model. In this particular case, the
“number of layers” determines how many times the model
iterates through the layers as pictured above in Figure 1.

When we set the learning rate at 0.1, we find that the
model converges to an MSE within 1 epoch and then stay
there. Specifically, the model settled on a training loss of
1.0202 in the 1-layer model and approximately 0.8 for the
2-layer model. If we wanted to keep an initial learning rate
of 0.1, perhaps to speed up the learning process at the very
beginning, we could experiment with learning rate decay, but
we find promising results with other hyperparameter settings.

We present the training and validation loss curves for
the remaining learning rate - layer combinations in Figure 4
below, making a slight modification to the 2 layer model with
a learning rate of 0.001. For this model, within just a couple
of epochs we see that the training rate error is decreasing

dramatically while the validation error is increasing, so we
added a regularization to prevent overfitting. In the preliminary
run pictured in Figure 4, we added L2 regularization with a
small penalty of 0.001.

While the training loss in the 1 layer models looks to
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Fig. 4. Clockwise from top left: MSE in 1 layer model with learning rate
of 0.01, MSE in 1 layer model with learning rate of 0.001, MSE in 2 layer
model with learning rate of 0.01, and MSE in 2 layer model with learning
rate of 0.001 and L2 regularization, penalty 0.001.

be on a decreasing trend even through 25 epochs, the
validation loss has itself more or less stabilized by around the
15th epoch for both learning rates, at values between 0.55
and 0.6. If we look at the losses of the 2 layer model with a
learning rate of 0.01, we see a sharp initial decrease in the
training loss from about 1.8 after the first epoch to 0.632
after the second. Both the training and the validation losses
stay roughly constant over the next 23 epochs, with the final
validation loss being 0.616 after the 25th epoch.

Overall, we see that the lowest training and validation
loss was achieved in the 2 layer model with a learning rate
of 0.01 and L2 regularization with a penalty of 0.001. The
validation MSE of this model reached a minimum of 0.47
after the 10th epoch. If we needed a model that is relatively
simple and quick to run, though, the validation MSE of the 1
layer model with a learning rate of 0.001 reached a minimum
of about 0.57.

Given that the 2 layer model with a learning rate of
0.001 has the lowest validation error rate, we focus on this
model and experiment with different settings for the penalty
function. In addition to the penalty weighting of 0.001
pictured above, we test penalty weights of 0.005 and 0.001.
Below, we provide the loss curves over 4 epochs for the
penalty of 0.005 and 20 epochs for the penalty of 0.001. We
can see a leveling off in the validation loss over runs of these
lengths, though in a less-time constrained world, we may
have let the models run for additional epochs to verify these
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were the minima.
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Fig. 5. At left: MSE in 2 layer model with learning rate of 0.001 and L2
regularization, penalty 0.005. At right: MSE in 2 layer model with learning
rate of 0.001 and L2 regularization, penalty 0.005.

After this hyperparameter tuning, we proceed to analyze
the results for our 2 layer model with a learning rate of 0.001
and a penalty of 0.01 in the L2 regularization.

In implementing our 5 day model, we use the same hyper-
parameter settings as in the 1 day model. With additional time,
we would further tune the hyperparameters on this alternative
architecture. The loss curve for the 5 day model is below.

Loss over Epochs
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Fig. 6. Using the 5-day model, MSE in 2 layer model with rate of 0.001
and L2 regularization, penalty 0.01.

VI. RESULTS

We run the 1 day and 5 day models using the learning rate
of 0.001, the L2 penalty of 0.01, and 2 “layers”. We run the
model for 7 epochs, as our validation loss reached its minimum
at this number of iterations. We then use these models to
predict the daily normalized temperature for every day over
our test set, and we find our training and test errors. We
compare these results with one practice in climate ensembling,
which is to take the average over a span of models.

Results - Total MSE

The MSE for our u-net implementation is considerably
lower than the MSE for the average of the ensemble. It is
interesting to note that the ensemble approach performs better
in its 5 day setting, while the CNN approach does better
in the 1 day approach. It makes sense that the ensemble
approach would do better in this set-up, as we are taking

the average over a few days and reducing the noise in the
predictions. One potential reason why the u-net approach
may be faring worse is that in this current implementation,
our sample size is effectively smaller in the 5 day approach
as compared to the 1 day approach. Specifically, we run the
model using discrete 5 day moving averages. This means
that for every 5 days of data that we start with, we get 1
data point in the 5 day model and 5 data points in the 1 day
model. In the future, it would be possible to retrain the model
with a sliding 5 day moving average to preserve the size of
the dataset. Regardless of the differences in performance in
the 5 day and the 1 day set ups, it is still the case that the
u-net model outperforms the simple ensemble average.

Model Training MSE | Test MSE
Ensemble, 1 Day 1.85 1.72
CNN, 1 Day 0.434 0.402
Ensemble, 5 Days 1.78 1.65
CNN, 5 Days 0.495 0.418

Further, it is interesting to note that the model performs
slightly better on the test set than on the training set, for
both the ensemble and our u-net implementations. Though it is
worth further exploring the reasons behind this, it is possible
that there was less observed variability over the first 6 years of
the 2000s, and that the climate hewed closely to its long-term
average.

Results, Spatially

In addition to looking at the overall MSE, we can learn
more about what, exactly, the model is doing if we plot the
results spatially. Here we will look at the pixelwise loss in the
form given below, which allows additional insight into whether
the model systematically over or under predicts temperature
a given region. We find this loss over our out-of-sample test
set, from the start of 2000 through 2005.
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In Figure 7, we plot the error for our models over the
test set. We also provide for a baseline the ensemble averages.

In these images, red indicates that the models overpredict the
observed temperature, blue indicates that they underpredict
the observed temperature, and white indicates that the error,
on net, was minimal. In terms of the land-based temperatures,
which are more of interest to policymakers and the general
public, it is clear to see that u-net model on net reduced the
biases of the ensemble. However, we see that the patterns of
errors are carried over from the ensemble approach to our
u-net approach: there are visible edges that carry over from
the ensemble approaches into the u-net approach. This is the
case even in cases where the sign of the error was different in
the u-net approach as compared with the ensemble approach,
for instance in the Northwest corner of the US.

It is clear that the error of the ensemble is particularly
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Fig. 7. Pixelwise error for the ensemble average and our u-net approach,

summing over the errors each day from 2000 through 2005. The units are in
normalized temperature.

extreme over the oceans. For our purposes, this is not of
much concern, as we are mostly interested in predicting
temperatures that will impact human populations. In future
iterations, we may want to remove over-water predictions
from our training and test sets to focus more specifically on
our regions of interest.

Interestingly, the regional distribution of errors seems to
track roughly with ecological zones. For instance, the area
that is most “over-predicted” in the ensemble approach, as
well as in our u-net approach, centers around the southwestern
US and stretches into Northern Mexico. This is a region
that is largely comprised of desert. Similarly, the area that
is most under-predicted in the ensemble as well as in the
u-net is in the southeastern United States, which historically
has been comprised of forests. Land cover does impact
climate processes, so it is possible that the climate models, in
focusing on atmospheric effects, do not fully account for the
effects of different ecosystems.

Finally, in comparing the 1 and 5 day models, there
appear to be only slight differences in the shades of
individual pixels. It may be the case that in order to see more
dramatic differences, we need to expand the temporal horizon
and include data from additional days.

VII. CONCLUSION AND NEXT STEPS

We find that there is significant promise for using a
convolutional approach to climate ensembling in place of
computing an average. In our implementation, our best
performing model features 2 passes through the layers in
our simplified u-net architecture, with a learning rate of
0.001, and L2 regularization with a penalty of 0.01. The loss
function is MSE, and we use an Adam optimizer to train
our results. We experiment with two architectures, one that
uses 5 days of input to predict a five day moving average,
and one that uses 1 day of input to predict a single days’
average. We find that there was minimal difference between
our 1 day and our 5 day models, though both models have
significantly lower errors that than the ensemble averages

over, respectively, 1 and 5 days.

When we plot our errors spatially, we find that the u-
net and the traditional ensemble are both particularly poor
at predicting temperature in the Southwest and the Southeast
of the United States. Although the u-net approach clearly
reduces overall error, we see that the regions that are
mispredicted bear similar patterns in the u-net approach as
in the ensemble, though the sign of the error may be different.

Given the performance improvements that the convolutional
approach seems to make when compared to a more classic
average, it is worth considering directions for future research.
These include the following.

Direct Prediction of Temperature

In this first pass, we aim to try to minimize the effects of
seasonal variation and long-term climate trends by demeaning
the data and looking at spatial variation. However, it would
be relatively straightforward to convert this model into one
that predicts temperature directly. The results from this would
be more interpretable and more directly relevant to policy
discussions.

Experimentation with Different Time Horizons

While climate models are usually run over periods of a few
years to a few decades, our approach has used daily data in an
attempt to gain insight into spatial biases in the model. It is
worth further expanding the number of days of data, beyond
5, that are included within one stack of input data, to see how
well this approach works with longer-term trends.

Data from Additional Models

In this first pass, we have included data from 3 separate
runs of different climate models. However, there are tens of
these centers all over the world, and each publishes results
from model runs with slightly different parametrizations and
initializations. This means that we could dramatically expand
the number of models that we are including as inputs to
our convolutions. This should only improve the accuracy of
our predictions, hopefully allowing us to further decrease the
errors over the Southeastern and Southwestern United States.

Looking at Different Filters for Different Times of Year

There is undoubtedly significant seasonal variation in cli-
mate. It would be interesting to see if we could further reduce
errors by splitting our dataset and trying to run separate models
for separate times of the year, for instance running separate
models for summer and for winter. The main downside to this
would be that we would have only a fraction of the data with
which to train the model for a given season.

Increasing the Complexity of the Model

This implementation represented a simplification of the
standard u-net approach, so it may be worth experimenting
with an architecture that is more directly aligned with [6].
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