DeepSecurity
Cybersecurity Threat Behavior Classification

Isaac J. Faber
Mangement Science and Engineering Stanford University
Email: ifaber@stanford.edu

Abstract—Identification of network traffic originating from
threats is an ongoing challenge in cybersecurity. Servers con-
tinuously receive requests from all over the world. Identifying
the proper subset of traffic requests as adversarial is essential.
Our DeepSecurity model uses a feed-forward neural network to
classify network traffic as either a threat or non-threat.

I. INTRODUCTION

We explore the topic of threat identification in cybersecurity.
Cyber-attacks are a set of discrete, observable steps called a
’kill chain’. When defending a computer system, it is typical
for a significant amount of data to be produced from security
devices. Appliances like firewalls, intrusion-detection-systems,
and proxies generate data useful for analysis. However, the
volume of security-related data is such that comprehensive
human evaluation is impractical. Much of current practice
is focused on known threat signatures which inform the
defender’s security posture. Security posture can be thought of
as a set of ’gates’ which have some probability of legitimate
or threat traffic flowing through them.

et
1 e
&a// 75\ } 7/4

T N

Recon Weaponize ~Deliver Exploit

Control Execute Maintain

.
Closed Gate
-

Open Gate

Kill Chain Stage

Fig. 1. Network Defenders Control a Set of Gates

The defender’s job is to find the optimal gate policy that
allows for minimal threat activity while allowing as much
legitimate activity as possible. Many threats (such as hackers,
malware, etc.) have specific non-linear behavior which may
manifest within data collected by network defenders. The
difficulty is knowing which gates to keep closed and which to
keep open. The number of gates is enormous and to difficult
to evaluate manually. For example, gates include:

e IP Address: Source and Destination
e Port: Source and Destination
o Time Stamp

Giovanni S. P. Malloy
Mangement Science and Engineering Stanford University
Email: malloyg @stanford.edu

« Packet content

However, using deep learning techniques, we can help differ-
entiate between legitimate network traffic and bad behavior.
Using a machine to make low-level gate decisions means that
human analysts will only see signals of sufficient importance.
This classification task can improve the efficiency of security
personnel and automate many of the currently manual pro-
cesses.

II. METHODS
A. Data

Security data is considered sensitive by most organizations,
so any methods developed would need to be generalized into
similar (but not identical) environments. Also, there has not
been much work done in the area of deep learning applied to
network level threat detection in this way so most techniques
will be new, untested and not useful for transfer learning.
One of the team members (Isaac) has personally collected
a unique dataset using honeypots and categorized threats
using an open source blacklist. There are several open source
datasets such as the publicly provided DARPA / MIT challenge
data (https://www.ll.mit.edu/ideval/data/). For this project, the
blacklist data contains IP addresses that are known to conduct
illegitimate network traffic. By cross-referencing the honeypot
IP addresses with the blacklist, we were able to label the
honeypot data for training purposes as either a threat or non-
threat.

We currently have over 600,000 network events in our
dataset. Therefore, to determine train, dev, and test sets, we
will first randomly sort these network events. Then, from the
randomized order, we will select the first 540,000 to be in the
training set, the second 30,000 to be in the dev set, and the
last 30,000 to be in the training set. These datasets will all
come from the same data distribution.

B. Features

As discussed in the introduction the amount of gates is
extremely large (contain all IP address, ports, and combina-
tions). In order to build a manageable feature set, this project
makes use of custom developed encodings (similar to NLP
modeling) using expert input. The input layer of the model
X will include three categories of encoded features: time
encoding, port encoding, and IP encoding. These encodings
come from the 600,000 network events of the honeypot data

and are done by unique IP address. The time encoding includes
2 parameters:

o the average of the hour of the timestamp (GMT)
o the standard deviation of the hour of the timestamp
(GMT)

The average hour of the day, ¢; will be a discrete input from
1 to 24 corresponding to the i*"* hour of the day in Greenwich
Mean Time.

The next subset of parameters comes from the port encoding
of the data. There are 6 port encoding parameters. The first
is a binary variable indicating whether the protocol request is
regular (1) or irregular (0). The next input parameter is the
source port of the network event. The following three port-
related parameters are a one-hot vector used to classify the
destination and source port:

« common database ports
« standard network ports (i.e. 22, 80, 443, etc.)
o the number of unique ports

Finally, the IP encoding includes 3 input parameters:

« total frequency of requests
o Geo-code: latitude
o Geo-code: longitude

Using these encodings avoids the pitfalls of large one hot
vectors. For example, our dataset contains 473 destination
ports. Using a one-hot vector to represent all of those would
result in 472 parameters with value O (the destination ports
not asked by the training example), and 1 with value 1 (the
destination port requested by the training example). A large
number of zeros input into the neural network will result in
a sparse network. Therefore, by using creative encodings, we
avoid a sparse network that is unable to learn.

C. Network Architecture

We use a feedforward network to implement DeepSecu-
rity. The network in its original form (Figure 2) had three
layers and a softmax output. The hidden layers are linear
with ReLU activation functions. This is a generic network
architecture that allows us to build an initial implementation
of the model quickly and focus more on iterations to improve
performance. Since we want the output to classify as 0
(not a threat) or 1 (threat), the softmax function with two
outputs is the best for the last activation function. In our
fully connected network, we have 478 corresponding neurons
per hidden layer and 1 nueron for the activation layer. The
resulting size of the parameters of our model is as follows:
whl = [478,9],61) = [478,1], W2 = [478,478],bl3 =
[478,1], WDl = [478,2],b[] = [2,1]. This means that the
model will handle 458,403 different parameters. This is a
manageable number of parameters and is easily reducible with
changes in network architecture as needed. However, using this
network architecture still produced both bias and variance.

We used three additional network architectures to ad-
dress the issues of bias and variance. To reduce bias
in our model, we used a bigger network (Figure 3).

Linear — ReLU — Linear — ReLU — Softmax

Xtime
xport

Xip

(0

Fig. 2. The network architecture involves two hidden layers that are linear
with ReLU activation functions and a sigmoid activation layer.

Xtime

Fully connected

Xport

OOO

O 0

Fig. 3. The network architecture involves ten hidden layers that are linear
with ReLU activation functions and a sigmoid activation layer.

The bigger network contains 11 fully-connected layers in-
stead of 3 which will avoid underfitting the model. The
resulting size of the parameters of the bigger network
are as follows: W = [12,9]pl) = [12,1], Wl =

[12,12],b 21 = [12,1], WB = [12,12],bB) = [12,1], Wil =
[12,12],614) = [12,1], WDl = [12,12],bP% = [12,1], W] =
[12,12], b[6] = [12,1), Wl = [12,12],87 = [12,1], W8l

[12,12],18 = [12,1], W = [12,12],b1° = [12,1], WO =
[12,12],600 = [12,1], Wl = [2 12],511 = [2,1]. Much

like the original network, each of these layers is feed-forward.
Yet, the number of connecitons between layers is much smaller
in order to reduce computation time. Therefore, the total
number of variables is only 1,550.

To reduce variance in our model, we used regularization
in the form of dropout(Figure 4). We chose to use dropout
because of our relatively large layer sizes. Dropout effectively
shrinks the network and spreads out the weights through the
model. We first implemented the dropout model on the 3 layer
network to determine the effects of dropout independent of
the effects of a bigger network. The amount of regularization
effect from dropout is dependent on the probability of keeping
a neuron in the network. As the probability of keeping a neuron
increases, the regularizing effect decreases. However, as the
probability of keeping a neuron in the network goes up, the
amount of training set error decreases. To balance the benefits
of regularization with the adverse effects of training set error,
the probability of keeping a neuron in our dropout model is
0.5.

Finally, we combined the 11 layer network with dropout in
order to combine the benefits of reduced bias and reduced
variance (Figure 5). We expect that the benefits will be
subadditive because the larger network will increase variance
and the regularizing effect of dropout will increase bias.

Pkeep = 0.5
Xtime Q/ ,

xport

Fig. 4. The network architecture involves two hidden layers that are linear
with ReLU activation functions and a sigmoid activation layer with dropout
implemented in each hidden layer (keep probability = 0.5).

O

Xtime Pkeep = 0.5 f }
tport

. ([OODOTTRS| -
Xip " “: '

o o

Fig. 5. The network architecture involves ten hidden layers that are linear
with ReLU activation functions and a sigmoid activation layer with dropout
implemented in each hidden layer (keep probability = 0.5).

D. Loss Function

We use a standard cross-entropy loss function to run
DeepSecurity: L{y,§} = —[ylog§+ (1 —y)log(1l —§)]. This
loss function is ideal for the threat/non-threat binary classi-
fication of this model. Therefore, the cost function for this
model is 7 = = > £{y,§}. We will use an AdamOptimizer
to minimize costs over the cross entropy loss function. The
AdamOptimizer will use the standard hyperparamter values of:
B1 = 0.9, B2 = 0.999, ande = 10~8. The AdamOptimizer is
the best choice for our problem because it is easy to configure
with only the hyperparamter value, o, needing training. It
combines the advantages of gradient descent and RMSProp
and is best equipped to handle sparse gradients.

E. Hyperparameters

The choice of hyperparameters - learning rate, epochs, and
minibatch size - was crucially important, as hyperparameters
affect all subsequent parameters. After testing over a wide
range of values, the best values for this early application where

o Learning rate = 0.001

« Epochs=1500

o Minibatch Size = 32

This resulted in the best model performance. In testing
these values, we examined learning rates from 0.1 to 0.00001
and Epochs from 200 to 2000. We also varied the minibatch
size extensively in multiples of 2 from 32 to 1,024. Over the
experiments, we found that a minibatch size of 32 performed
the best and did not significantly impact run time of the model.

F. Measuring Error

To measure performance, we will look to quantify error.
By comparing our results to the blacklist dataset, we can
determine the error of the training set, development set, and
the test set. Using these measurements of error, we will be able
to decide on the levels of variance and bias from our model.
For cybersecurity applications, false positives are especially
resource-intensive errors. Therefore, we will focus on mini-
mizing false positive results to improve precision and recall
related to thresholds for alerting a human analyst. Since we
are concerned with false positives, to evaluate DeepSecurity,
we will be more concerned with precision than recall or F1
score to measure error. However, we will measure accuracy,
precision, recall (senstivity), F1 score, and specificity for each
model variant.

Accuracy = el danci
TP+ FP+TN+ FN
Precision = rp
TP+ FP
TP
Recall = 75 7N
Pl 2 % Precision x Recall

Precision + Recall
ITII. RESULTS
A. Performance Metrics

The model was run using mini-batch gradient descent with
and Adam optimizer using TensorFlow in python. Table I
shows the variability among different network architectures.
Overall, deep learning methods outperformed traditional ma-
chine learning methods, like logistic regression, in all mea-
sures. Accuracy was highest with the original 3 layer network,
the enlarged 11 layer network, and the 11 layer network with
dropout. Precision was the weakest performance measure for
all of the different model structures. Precision is the proportion
of threat detections that are true threats rather than false
postivies. This indicates that more than half of the threats
detected by the model are not actually threats. The 11 layer
network performs the best of any network in precision. Recall
and F1 score are less important measures for this application,
as we aim to minimize false positives. Recall representa the
proportion of actual threats that were detected. In this case,
all of the network architectures performed relatively well. As
expected, the F1 scores fell inbetween the precision and recall
scores for all network architectures.

TABLE I
TEST MODEL RESULTS
Accuracy Precision Recall FI1 Score
Logistic Regression ~ 0.59 0.40 0.59 0.46
3 Layers 0.64 0.44 0.64 0.51
Dropout 0.63 0.42 0.63 0.49
11 Layers 0.64 0.47 0.62 0.53
11 Layer (Dropout) 0.64 0.45 0.64 0.53

Learning rate =0.001

0670
0665
0660

& 06ss
0650

0.645

0.640

T T 21 T T T
50 100 150 200 250 300
iterations (per tens)

o

Fig. 6. The cost function of the three layer network over 1500 epochs.

Learning rate =0.001

0.67

066

cost

0.65

0.64 1

063

T T T T T T
50 100 150 200 250 300
iterations (per tens)

o4

Fig. 7. The cost function of the eleven layer network over 1500 epochs.

B. Costs

The cost improvement for all models is generally consistent.
The costs improve ove epochs but level out quickly with
only marginal improvement after epoch 100. As expected
with minibatch implementation, the cost experiences some
perturbations over time. These are minor when compared to
the general trend of the model costs. These perturbations are
due to the stochastic nature of a minibatch implementation.
The original network architecture and the larger network
architecture cost improvements (Figures 6 and 7) are not
dramatic, but they do show measurable improvement over
time. This indicates that the model is learning from the dataset,
albeit slowly. As the network depth increases, the overall cost
computed also decreases. This reflects the overall improved
performance as the network grows. The dropout network did
not improve costs after the first iteration (Figure 6). This
is likely because our model did not have much variance.
Therefore, regularization did not improve the costs associated
with the model.

IV. CONCLUSIONS

The initial performance of these models against the col-
lected data is not strong. The maximum accuracy is still
under 65%. However, the models do show signs of promise;
particularly, in that they universally outperform traditional
machine learning methods, such as logistic regression. Of the
network architectures explored, the 11 layer network without

Learning rate =0.001

0.78

0.76

074

cost

0.72

0.70

0.0 25 5.0 75 100 125 150 175
iterations (per tens)

Fig. 8.
epochs.

The cost function of the three layer network with dropout over 100

dropout performed the best. This indicates that the model
inherently has more problems with bias than with variance.

The reason for this poor performance is likely due to
the dataset itself. The individual events (log data from the
honeypot sensors) are noisy and may not contain enough
information, especially with the encoding. While encoding
allows us to avoid scarce networks, it requires a high level
of expertise and will inevitably influence the model results.

The high bias observed in the model is likely also caused in
part by the data itself. Collecting raw internet data will always
introduce bias at some level. The collection of raw and biased
internet data is therefore the cause of some of the performance
degradation.

V. FUTURE WORK

When taking this project forward, there are a number of
improvements we seek to make. The most important im-
provement to this project is more and better quality data.
Currently, we believe the shorfalls of our exisitng model derive
from a lack of quality data. Becasue we are using a self
generated data set which contains only honeypot events with
imperfect classification there are many improvements that can
be made. Similarly, the balance between data encoding and
scarce one hot vectors should be improved. Future iterations
of models should look at various combinations of encoding
methods. Moreover, there are other known indicators of po-
tentially threatening behavior for IP addresses not listed on
the blacklist. We did not consider these types of behaviors
when labeling our data. This additional labeling might improve
the results of our current model. It is possible that our
current model predicts and detects threatening behavior from
IP addresses listed as threats and the same behavior from
unlisted IP addresses also as threats. However, in its current
form, these are counted as false positives.

VI. CONTRIBUTIONS

Isaac and Giovanni each contributed equally based on
their respective skill sets. Isaac primarily worked with the
data and developed the original network architecture, while
Giovanni improved on this architecture in future iterations.

Both contributed equally to the poster creation and the writing
of the paper.

VII. CODE

The code and data for our project is publicly avail-
able on MatrixDS at https://community.platform.matrixds.
com/project/5afb09f087c54574a2be3ce4. The project folders
are organized as follows:

o DataCleaningAndPrep: All code for preparing the data
for modeling

o DeepLearningFiles: All model notebooks and data

o ProjectReport: All report files

Please be patient for the project to render as there are quite
a few files. Thanks!

REFERENCES

[1] T Mahmood and Uzma Afzal. Security analytics: Big data analytics for
cybersecurity: A review of trends, techniques and tools. In Information
assurance (ncia), 2013 2nd national conference on, pages 129134. IEEE,
2013.

[2] Javaid, Ahmad, et al. A deep learning approach for network intrusion
detection system.” Proceedings of the 9th EAI International Confer-
ence on Bio-inspired Information and Communications Technologies
(formerly BIONETICS). ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2016.

[3] Wang, Wei, et al. "Malware traffic classification using convolutional
neural network for representation learning.” Information Networking
(ICOIN), 2017 International Conference on. IEEE, 2017.

[4] Ma, Tao, et al. ”A hybrid spectral clustering and deep neural network
ensemble algorithm for intrusion detection in sensor networks.” Sensors
16.10 (2016): 1701.

[5] Wang, Wei, et al. ”End-to-end encrypted traffic classification with one-
dimensional convolution neural networks.” Intelligence and Security
Informatics (IST), 2017 IEEE International Conference on. IEEE, 2017.

