Macroeconomic and Technical Forecast of USDJPY Daily
Spot Rate using Deep Neutral Network

Ren Hao Tan
Department of Computer Science
Stanford University
renhao@stanford.edu

Abstract

Daily USDJPY exchange rates are influenced by a host of factors ranging from
macroeconomic trends, expectation of monetary policies and speculative investor action
based on past price actions. A deep neural network trained on current and historical
information is shown to be able to predict the next-day USDJPY open rate.

Index Terms—deep learning, foreign exchange rate prediction, investment science, neural
network, time-series analysis (G11, GI12, G14, G17)

I. Introduction

The prediction of daily USDJPY exchange rate based on past data is an interesting topic because
the specification of USDJPY rate is influenced by a host of factors ranging from macroeconomic
trends, expectation of monetary policies and speculative investor action based on technical factors.
Despite being a complex and nonlinear problem, the set of determining factors for USDJPY rate
seems to be reasonably finite; this suggests that a well-trained neural network could be effective
in predicting price movements.

Understanding USDJPY dynamics is important not only in creating opportunities for profitable
trades. It is also critical insofar as it informs policymakers of potential impacts each decision could
have on the external economy. For many countries which relate heavily on the external market
(e.g. Singapore), the movement of the exchange rate is used as a key monetary policy tool to affect
the economy, in lieu of more conventional interest rate policy mechanisms. [have chosen USDJPY
as the benchmark rate as it is one of the most widely referenced exchange rate.

I1. Dataset and Features

This paper has identified 21 variables which economic literature has shown to be predictive—at
least in theory—of fluctuations in USDJPY foreign exchange rates. They are:

Spot daily rates of other major currencies: EURUSD, GBPUSD, USDCNY, NZDUSD and USDCHF

Consumer price inflation rates of US and Japan

Close price of stock indices in US and Japan: S&P 500 Index and Nikkei 225

Yields of government bonds in US and Japan: US 13 Week Treasury Bill, US Treasury 10 Year Bond,
US Treasury 30 Year Bond, Japanese Government 2 Year Bond, Japanese Government 10 Year Bond
Export and import price indices in US and Japan

Cross-border trading volumes between US and Japan

e CBOE volatility index (VIX)

These variables dated from 1995-03-31 to 2017-09-11 were extracted manually from FRED,
Quandl, Yahoo Finance, Bloomberg and Bureau of Labor Statistics and transformed into daily
frequencies. Observations on the first 5800 days, next 1200 days and last 1000 days of the above-
mentioned period were placed into the training, dev and test sets (58:15:10) respectively.

II1. Method: Baseline Regression

Multiple linear regression analysis was used to test if these 21 covariates X, significantly predicted
the next-day USDJPY rate, denoted as yi+1. The linear regression model, when applied on the dev-
set, indicated that these 21 covariates combined explained only 24.8% of the variance
(RMSE=17.10).

(1) Yes1 = P X¢

A one-day lag of covariate was clearly insufficient in explaining y,, ;. Based on the weak form of
Efficient Market Hypothesis, which claims that prices on traded assets (e.g., stocks, bonds, or
property) already reflect all past publicly available information, we hypothesize that y, captures
much of the variations of the 21 variables prior to day t which are relevant in predicting y;, ;. If
this is true, a robust model for y;,; could omitted covariates prior to day t and be described as:

Yesr = f (e, Xe)

The partial autocorrelation function (PACF) of y, corroborated this hypothesis as it sufficiently
cuts off after lag=1.

1.0
1.0

w_
© | o
(=]
Lo
o | 2 o]
o
'-(_L)]
5 x R
o o

0.2
1
0.2

Furthermore, an ARIMA(1,0,0) model based only on y,

(2) Yes1 = PVt

had a dev-set RMSE of 0.674 which is below that of model (1) .

In combination, a 1-lag autoregressive model with macroeconomic regressors was found to be
powerful in delivering a low dev-set RMSE of 0.520.

(3) Yes1 = P1Ye + B2 Xe

IV. Deep Learning Model Specification

This paper considered two deep learning architectures—(1) deep neural network with the inclusion
of y; as an input for prediction of y,,, and (i1) a Long Short Term Memory (LSTM) network
which did not require an explicit inclusion of y, in predicting y;,, due to the architecture’s ability
to store past information in a time sequence. We inferred from the excellent performance of (3)
that deep neural network should be sufficient (if not more robust due to reduction of noise) in
tackling this problem.

RELU RELU RELU
20 10 5

Loss Function: Mean Squared Error (MSE),
Adam Optimizer; Batch Size: 128; Epoch: 100

(4)

Prior to any hyper-parameter tuning, (4) generated a RMSE of 0.688 which was comparable to (2).
The model shows promise to yield better results.

(5)
77
LA A (A A A

() &)

LSTM(50) > ReLu(10) > Linear(1); Loss Function:
Mean Squared Error (MSE); Adam Optimizer,; Batch Size: 128; Epoch: 100

As expected, the LSTM architecture performed poorly across many varying hyper-parameters. For
the specific set of hyperparameters outlined in (5), it had a RMSE of 24.35.

Model (4) is therefore chosen for the project. In its hidden layers, we employ RelLu activation
function to accelerate learning and avoid vanishing gradient. Since we are solving a regression
problem, a ReLu function is also used for the outcome layer to generate a real value. ReLu is

particularly suitable for the output layer in this case because USDJPY rates are all positive real
numbers. Mathematically, the deep network is described as follows:

hY = ReLuwx, + b
h? = ReLu(WPhlM + b7
o [2]
Vi = ReLu(W,h;"" + b,)

where hgi]represents the i-th hidden layer and W, U and b are parameter matrices. Loss function
used is MSE.

V. Hyperparameter Tuning

First, preliminary optimization of the number of training iterations, N, is performed on the chosen
model (4) using the dev set RMSE as the minimizing metrics.

Hyperparams | Tuned Value(s)
Epoch 100,500,1000,2500,5000
Tune 1: Preliminary Number of Epochs

Epoch=1000 is used for subsequent tuning as it gave the lowest RMSE (0.345) on the validation
set. Then, the number of nodes nx in each of the 3 hidden layer and dropout regularization in the
first 2 hidden layers are tuned.

Hyperparams | Tuned Value(s)
n 20,40,80

n 10,20,40

n3 5,10

dropoutl 0,0.3,0.7
dropout?2 0,0.3,0.7

Tune 2: Size of NN & Dropout

Based on 162 combinations of the above hyperparams, the 3 configurations with the lowest RMSE
on the dev set are:

ni | m2 | n3 | dropoutl | dropout2 | devRMSE
201205 |0 0 0.217
201405 |0 0 0.244
201105 |0 0 0.254

The fourth best configuration 40>10>5 with no regularization has significantly higher devRMSE
of 0.328. Also, from the previous results on the dev set, it seems that more search could be
conducted for n2to find more optimal configurations. In this final set of tuning, nz is tuned together
with the number of training iterations, N around epoch=1000, while setting ni=20, n3=5,
dropout1=0, dropout2=0.

Hyperparams | Tuned Value(s)
Epoch 750,1000,1500, 2000
n 10,20,30,40,50

Tune 3: Fine-tune hidden layer 2 & #epoch

Altogether, the chosen hyperparameter configuration is as follows:

Epoch=2000
Loss: MSE

VI. Results

ReLu[20]>ReLu[50]>ReLu[5]
No dropout regularization

Adam Optimizer

The results of the various models developed in this paper are summarized as follows:

Model Train Dev Test
RMSE | RMSE | RMSE

Slmpl.e linreg on 5511 17.10

covariates only

Linreg w1th_ 0671 0.520

autoregression

LSTM 0.084 24.35

NN pre tuning 0.469 0.688

NN post tuning 0.237 0.163 0.235

The tuned model achieved a test RMSE of 0.235 and test MAE of 0.222.

VII. Portfolio Simulation

A hypothetical portfolio of $10,000 on the test set is simulated. Investor A invests entire portfolio
in USD if the model prediction of next-day USDJPY is higher than the current rate. Conversely,
he shorts USDJPY if the predicted next-day rate is lower.

11500
|

Portfolio Value (USD)
10500
|

9500

0 200

T T
400 600

Time

T T
800 1000

Investor A would have scored an annualized investment return of 0.3% assuming no leverage and
no transaction costs.

It is however unrealistic to assume an investor will invest if the prediction differs marginally from
the current rate. Instead, assume Investor B is like A except that he invests only when the
forecasted deviation exceeds the mean absolute error of the dev set (~0.25).

12000
|

Portfolio Value (USD)
|

9500 10500

T T T T
0 200 400 600 800 1000

Time
The portfolio performance improves significantly to 6.8% annualized return; as shown, investor B
1s not compelled to invest during a period when the model was not producing a strong signal
(around t=500).

Lastly, we model a third investor C who engages in leveraged positions (which is a staple in foreign
currency trading). We assume a fixed 10x leverage.

Portfolio Value (USD)
30000
|

10000
|

T T T
0 200 400 600 800 1000

Time

At the expense of increase volatility, Investor is able to generate an impressive return of 54.3%
each year.

The portfolio metrics of each investment strategy on the test set is outlined as follows:

Investment Strategy | Annualized | Sharpe
Returns Ratio

fA: no leverag@; no 0.3% 0.10
orecast margin

B: no leverage; o
margin=dev_MAE e 0.854
C: 10x leverage; o
margin=dev_MAE >4.3% 0.834

VIII. DISCUSSION

This paper has demonstrated that a deep neural network with an autoregression lag of one is a
robust architecture in forecasting the next-day USDJPY exchange rate, when used in conjunction
with relevant macroeconomic and financial indicators commonly monitored by central banks and
financial market participants.

Initial investigations of this paper also empirically validated claims of the Weak Efficient Market
hypothesis by showing that current price is a sufficient, if not more superior, indicator of past
macroeconomic information in predicting future prices. In other words, the foreign exchange
market seems to “price in” past information efficiently. This is to be expected given the huge
liquidity and transaction volumes of the USDJPY market. Further work could possibly investigate
if similar claims could be made in more exotic currency pairs which are traded less frequently.

The deep neural network trained on MSE not only gave low test error rates, but also translated
well into hypothetical portfolio performance on the test set. There are three possible areas of
extension to improve the profitability of this model. Firstly, instead of using MSE as the loss
function, one could train either the annualized return rate or Sharpe ratio as the objective. Secondly,
the amount of leverage and the forecast margin before which investments are executed are
hyperparameters which could be tuned on the dev set before use on the test set. Currently, these
parameters are set a priori. Lastly, a three class classification-based neural network could also be
built to predict if the next-day rate would increase (or decrease) past a certain threshold. An
ensemble could be designed such that the model only “participate” in a prediction of there is
concurrence between the classification model and regression model.

References

[1] E. Hadavandi, H. Shavandi, A. Ghanbari, “Integration of genetic fuzzy systems and artificial neural
networks for stock price forecasting”, Knowledge-Based System, Vol. 23, No. 8, 2010, pp. 800-808.

[2] A. Fan, and M. Palaniswami, “Stock Selection Using Support Vector Machines”, Proceedings of the
International Joint Conference on Neural Networks, Vol. 3, 2001, pp. 1793-1798.

[3] K.J. Kim, and W. Lee, “Stock Market Prediction Using Artificial Neural Networks”, Neural
Computing & Applications, Vol. 13, No. 3, 2004, pp. 255-250.

[4] K.Y., Shen, “Implementing Value Investing Strategy by Artificial Neural Network™, International
Journal of Business and Information Technology, Vol. 1, No. 1, 2010, pp. 12-22.

Appendix: Code and Methodology

Data Extraction

Data is extracted manually as .csv files from FRED, Quandl, Yahoo Finance and Bureau of Labour
Statistics. All dates between 1990-01-01 to 2017-12-31 are generated, and the 21 downloaded
tuples are joined in Excel using vlookup(). Then for all covariates except USDJPY (the response),
lag by t=1 since only the t-1 variables should be available to predict t.

Data Import

“““{r import}
macromodel <- read.csv(file="USDJPY.csv", header=TRUE, sep=",")
macromodel $Date <- as.Date(macromode1$Datej

Data Cleaning

Apply LOCF so that monthly data is synchronized into daily frequencies. Remove missing
observations (which are all before a certain date due to LOCF). Split into 58:15:10 train-dev-test
sets.

#Last Observation Carried Forward
library(zoo)

macromodel<-na.locf(macromodel, na.rm = TRUE)
sum(is.na(macromodel))

#Turn chr into num types
for (i in 2:22){
macromodel[, i] <- as.numeric(macromodel[, i])

}

#remove observations with missing value (i.e. before 1995-03-31)
macromodel .nafix <- na.omit(macromodel)
sum(is.na(macromodel.nafix))

library("caret™)

#split into train-dev-test roughly 58:12:10
train.set <- macromodel.nafix[1:5800,]
dev.set <- macromodel.nafix[5801:7000,]
test.set <- macromodel.nafix[7001:8000,]

Data Exploration

####S1mple linear regression on covariate
7 {r simplel}

train.setl <- train.set

train.setl$Date <- NULL

#Linear Regression
ImFit<-train(USDJPY~.,data = train.setl, method="1m")
summary(lmFit)

dev.setl <- dev.set
dev.setl$Date <- NULL

#Evaluation of Linear Regression on train Set
predicted.lmFit<-predict(lmFit,train.setl)

modelvalues.lmFit<-data.frame(obs = train.set1$USDJPY, pred=predicted.lmFit)
defaultSummary(modelvalues.lmFit)

#Evaluation of Linear Regression on Dev Set
predicted.lmFit<-predict(lmFit,dev.setl)

modelvalues.lmFit<-data.frame(obs = dev.set1$USDIPY, pred=predicted.lmFit)
defaultSummary(modelvalues.1lmFit)

####Time series analysis (plot ACF, PACF)

= rEE
##transform USDIPY into time series Call:

train.set3 <- train.set arima(x = USDJPY.ts, order = c(1, @, @))
USDJPY2 <- train.set3$USDIPY

train.set3$Date[1] Coefficients:
train.set3$Date[length(USDIPY2)] arl ‘intercept

0.9993 109.5580
s.e. 0.0007 13.1669
USDJPY.ts <- ts(USDIPY2)

plot(USDJPY.ts) sigmaA2 estimated as 0.4542: 1log likelihood = -5944.4, aic = 11894.81

: . Training set error measures:
##plot ACF and PACF for the time series ME RMSE MAE MPE MAPE MASE

acf(USDIPY.ts) Training set -0.001835565 0.673947 0.4019397 -0.005401689 0.36689 1.006833
pacf(USDJIPY.ts) ACF1
S Training set 0.01667421

*““{r arima}

##fit arima on USDIPY alone

arima.model<- arima(USDJPY.ts, order=c(1,0,0))
summary(arima.model)

As shown, the ARIMA(1,0,0) model alone provides a low training RMSE of 0.674, close to that
of the autoregressive model with t-1 regressors used. This make sense as the previous day's
USDJPY would provide a strong anchor for the next day's price.

####Linear regression on covariate and lag =1

##add previous day's USDIPY as predictor of today's USDJIPY
train.set2 <- train.set

USDJPY1 <- train.set2$USDJIPY

USDJPY1<-append(USDJIPY1, @, after=0)

USDJPY1<-USDJPY1[-1ength(USDIPY1)]

train.set2%Date <- NULL
train.set2$USDJPY1 <- USDJPY1l
train.set2 <- train.set2[2:dim(train.set2),]

#Linear Regression
ImFit2<-train(USDJPY~. ,data = train.set2, method="1m")
summary(1lmFit2)

LSTM
“{r LSTM}
##try a simple LSTM with 50 neurons in 1st hidden layer, 1 "relu" layer and 1 linear layer for output

X_train.lstm<-X_train
X_dev.lstm<-X_dev

#center & scale

preProc <- preProcess(X_train.lstm, method = c("center", "scale"))
X_train.lstm<-predict(preProc, X_train.lstm)

preProc2 <- preProcess(X_dev.lstm, method = c("center", "scale"))
X_dev.lstm<-predict(preProc2, X_dev.lstm)

#reshape 2D into 3D

X_train.lstm<-array_reshape(x=as.matrix(X_train.lstm), dim = list(nrow(X_train.lstm), 1,
ncol(X_train.1lstm)))

X_dev.lstm<-array_reshape(x=as.matrix(X_dev.lstm), dim = list(nrow(X_dev.lstm), 1, ncol(X_dev.lstm)))

##set up model

model.lstm <- keras_model_sequential()

model.lstm %>%
layer_lstm(units = 50, input_shape = c(1,21),kernel_initializer="normal') %>%
layer_dense(units = 10, activation = 'relu',kernel_initializer="normal') %>%
layer_dense(units = 1, activation = 'linear',kernel_initializer="normal')

summary(model.1lstm)

##compile with loss function MSE

##default is adam's paper values

model.lstm %>% compile(
optimizer = optimizer_adam(),
loss = 'mse')

##train model with 1000 epochs and 128 batch size
history<-model.lstm %% fit(

X_train.lstm,

as.matrix(Y_train),

epochs=1000,

batch_size=128,

verbose=1)

plot(history)

calculate pseudo R-squared

predict.lstm <- model.lstm %>% predict(X_dev.lstm, batch_size=128)
predict.lstm<-as.vector(predict.lstm)

plot(predict.lstm,Y_dev)

rmse. lstm<-sqrt(mean((Y_dev-predict.lstm)A2))
rmse.lstm

Deep NN

##set up flags

FLAGS <- flags(
flag_numeric("layerlsize", 20),
flag_numeric("layer2size", 10),
flag_numeric("layer3size",5),
flag_numeric("epoch",2000),
flag_numeric("dropoutl"”,0),
flag_numeric("dropout2",®)

D)

##set up model

model <- keras_model_sequential()

model %>%
layer_dense(units = FLAGS$layerlsize, input_shape = k, activation = 'relu',kernel_initializer="normal') %>%
layer_dropout(rate = FLAGS$dropoutl) %>%
layer_dense(units = FLAGS$layer2size, activation = 'relu',kernel_initializer="normal') %>%
layer_dropout(rate = FLAGS$dropout2) %>%
layer_dense(units = FLAGS$layer3size, activation = 'relu',kernel_initializer="normal') %>%
layer_dense(units = 1, activation = 'linear',kernel_initializer="normal')

summary(model)

##compile with loss function MSE
##default is adam's paper values
model %>% compile(

optimizer = optimizer_adam(),

loss = "mse’,

metrics = 'mae')

##train model with 1000 epochs and 128 batch size
history<-model %>% fit(

as.matrix(X_train),

as.matrix(Y_train),

validation_data=1list(as.matrix(X_test), as.matrix(Y_test)),

epochs=FLAGS$epoch,

batch_size=128,

verbose=1)

plotChistory)

calculate RMSE
predict <- model %>% predict(as.matrix(X_test), batch_size=128)
predict<-as.vector(predict)

plot(predict,Y_test)

Hyperparameter tuning

““*{r tuning}
library(tfruns)

runs <- tuning_run("model.R", flags = list(
layerlsize = c(20,49,80),
layer2size = c(10,20,30,40,50),
layer3size = c(5,15),
epoch = c(500,1500,2000,2500,5000),
dropoutl= ¢(0,0.3,0.7),
dropout2=c(0,0.3,0.7)

)

View(ls_runs())

Portfolio Simulation

X_test$nnpredict <- predict
X_test$actual <- Y_test

portfolio <- rep(0,999)
portfolio[1] = 10000

for (i in 1:999) {

}

today_price <- X_test[i, "USDJPY1"]
next_day_guess <- X_test[i, "nnpredict"]
next_day_realize <- X_test[i, "actual"]
if(next_day_guess>today_price){

#long USDJPY

portfolio[i+1] = portfolio[i]*(1+(next_day_realize/today_price-1))
}
if(next_day_guess<today_price){

#short USDJIPY

portfolio[i+1] = (portfolio[i])*(1-(next_day_realize/today_price-1))
}
else{

portfolio[i+1]=portfolio[i]
}

portfolio[999]
plot(portfolio, type='l"', xlab="Time", ylab="Portfolio Value (USD)")

portfolio_returns <- rep(0,999)
for (i in 1:999){

}

portfolio_returns[i+1] <- portfolio[i+1]/portfolio[i]-1

sqrt(365)*(mean(portfolio_returns)/sqrt(var(portfolio_returns)))

Portfolio Value (USD)

11500
|

10500
|

9500
|

I I I I I I
0 200 400 600 800 1000

Time

