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Abstract— This work implements a dual-pathway 10-layer
neural network (Fig. I.) for brain lesion segmentation on
the ATLAS (Anatomical Lesions After Stroke) dataset, newly
compiled and released by the University of Southern California,
contains 229 T1-weighted MRI scans each labeled with a 3D
mask segmenting (possibly) multiple lesions. We process these
scans in two-dimensional horizontal slices and achieve sharper
performance than a baseline encoder/decoder network with a
significantly smaller network.

I. INTRODUCTION

The analysis of stroke lesions informs medical treatment at
two separate stages: the acute stage (< 24 hours after stroke)
and the longer term subacute/chronic stages. During the acute
stage, clinicians face important time sensitive decisions, such
as whether to perform surgery to prevent further brain dam-
age or other impairment. During the subacute/chronic stages,
clinicians typically work with patients to rehabilitate lost
speech or motor function. In both of these cases, neurologists
and neuroradiologists frequently analyze brain lesions as a
result of the stroke throughout the decision-making process.
While there exist several automated and semi-automated
procedures for mapping these lesions, the industry standard
is still expert hand-labeling, which is time-intensive and
inefficient.

Here we analyze the ATLAS dataset of T1-weighted
MRI scans complete with segmentation of brain lesions.
We implement a dual-pathway deep neural network which
processes two-dimensional slices from these scans of size
232 x 196 and predicts lesion masks for these slices.

II. RELATED WORK

Early work in brain lesion and tumor segmentation used
traditional machine learning techniques (such as random
forests) which treated these tasks as anomaly detection [1].
In these approaches, a new brain scan is compared directly
to a healthy one and structural similarities and differences
are compared. While this is generally an effective method
for classification, it is much less useful for segmentation.
Brain lesions are often large enough to change the large-scale
brain structure, which makes direct comparison of anatomical
features difficult. This renders such methods ineffective for
segmentation.

Many recent approaches to these problems use neural
network techniques. The inspiration for our network comes
from tumor segmentation rather than lesion segmentation.
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Fig. I. Crops from an input image are successively passed through
our dual-pathway network before being synthesized into a final
predicted mask.

In [2], the authors find the most effective means of tumor
segmentation to be an ensemble learning approach with
separate networks designed to target specific regions of the
brain. This approach was synthesized in Kamnitsas et al. [3]
with a dual network design very similar to ours. The idea is to
combine the multiple region specific models by passing both
local and global information into the network. This allows
the network to learn the context surrounding the input image
and utilize this information during segmentation, eliminating
the need for location-specific models.

III. THE ATLAS DATASET

The ATLAS (Anatomical Lesions After Stroke) dataset,
newly compiled and released by the University of Southern
California, contains 229 T1-weighted MRI scans each la-
beled with a three-dimensional mask segmenting (possibly)
multiple lesions. By taking horizontal cross-sections, this
gives a collection of 43,281 two-dimensional T1-weighted
MRI slices. Note that while every three-dimensional scan
contains at least one lesion, many of the two-dimensional
cross sections do not intersect these lesions. Labels were
provided by a team of 11 trained labelers and verified
by a neuroradiologist and an expert labeler. While there
exist other large datasets of brain lesion data, ATLAS is
relatively unique in that it uses high-resolution T1-weighted
scans which are usually reserved for academic research and
analysis of long-term damage and rehabilitation. This stands
in contrast to the ISLES data set, which does not have T1-
weighted scans. The compilers of ATLAS do not expect
techniques imported from the study of ISLES to perform
optimally.

IV. BASELINE ENCODER/DECODER NETWORK

As a point of comparison for DualNetFC, we introd-
uct a baseline model which we will refer to at the “En-
coder/Decoder Network”. In our code we refer it as the
Atlas Model (and to avoid confusion from the data set and



Fig. I. A sample two-dimensional slice of an MRI scan in the
ATLAS dataset along with its segmentation label.

Fig. IIl. Some sample outputs for DualNetFC. In each image, the
left is the input scan, the middle is the target mask, and the right
is the predicted mask.

the organization, which have the same names, we will call
it the“Encoder/Decoder Network™ in this report). This is
a simple feed-forward network which takes in a full two-
dimensional slice, passes it through 3 x (3 x 3 convolution,
2 x 2 max-pooling ), 3 fully connected layers of sizes
1024, 256, and 1024, and finally 2 x (2 x 2 upsampling,
3 x 3 deconvolution). The Sgrensen-Dice coefficient of this
model converges to 0.40 when trained by_slice and 0.16
when trained by_scan (see the Training section for details
on these methods). This model has 93,705,297 parameters.
We will use these scores as our baseline performance for
comparison. We note that the performance of this baseline
model decreases sharply when the 1024-node fully connected
layers are decreased in size. This stands in contrast to
the analysis of DualNetRC256 detailed in the Experiments
section below.

V. DUALNETFC DESIGN AND IMPLEMENTATION
A. Architecture

DualNetFC processes a 232 x 196 input as follows (Fig.
IV.). A series of twelve 100 x 100 “blue” crops are taken
from the image, and from each the central 50 x 50 “green”
crop is extracted. The crops are then processed as follows:

1) Each “blue”/“green” pair is fed to the network in
succession.

2) The “green” crop is passed through the upper pathway
of the network, which consists of 7 convolutional
layers (all of which have 3 x 3 filters and “SAME”
padding).

3) The corresponding “blue” crops are passed through
the lower pathway of the network, which consists of
2 x ((2 x 2) pooling, then 3 x 3 convolution), four
fully-connected layers with dropout of sizes 512, 128,
512, and 25 %25 %30, upsampled to 5050 30, passed
through 2 x (2 x 2 deconvolutional layer).

4) The upper and lower pathways are then concatenated
along the channel direction and passed through three
1 x 1 convolutions. This output is then zero-padded so
that the precicted mask lines up with the location of
the input crops in the input image.

5) Predictions for each slice are then simply added to-
gether and passed through a pixel-wise sigmoid func-
tion.

6) The final mask is generated by taking those pixels for
which the network has predicted a probability > 0.5.

B. Objective Function and Accuracy

The loss function here is a weighted pixel-wise cross-
entropy:
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Accuracy in image segmentation is usually measured
with respect to the Sgrensen-Dice coefficient (SDC) of a
prediction-target pair, rather than just from the loss function.
For two masks X,Y this coefficient is given by:
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This measure of accuracy takes into account both false
positives and false negatives.

€ [0,1].

C. Training

There are two distinct ways of dividing the ATLAS dataset
into training/dev sets:

1) In a by_scan split, the 229 three-dimensional scans are
divided into training/dev sets, which are then processed
in two-dimensional slices. Thus, during training the
network does not see slices from any of the scans
present in the development set

2) In a by_slice split, the 43,281 two-dimensional slices
are shuffled and divided into training/dev sets. In this
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Fig. IV. The input is sliced into 12 green boxes according to the dashed green grid. Each green box is 507 pixels, centered by a 100% pixels blue box
(possibly overlapping with other blue boxes). The model neglects a 16 23 margin from the input, which mostly contains no useful data. The green boxes
are passed through the top path, which aims to scrutinize the detailed contours from the local information (thus no max pooling is used). On the other
hand blue boxes provide contextual information for their central green boxes through the bottom path. The output from each pair of green and blue box
will be a 507 pixels box, located exactly where the input green box is. The final prediction results from patching all these boxes together with necessary

case, the network does train on slices from scans placed
in the development set.

It is clear that a model trained by_scan should be expected to
have worse performance than one trained by_slice; the latter
offers the network the opportunity to memorize the training
data and apply that knowledge directly to the development
set, as many of the cross-sections will look similar. We
trained separate models by_scan and by _slice.

In both cases, we allocated 30% of the data to a de-
velopment set, yielding a train/dev split of 30197/12984.
The network was trained on a single GPU and converged
in approximately 60 epochs, each of which took approxi-
mately 6 minutes to run. We employed Adam optimization
with the standard parameter values, a dropout rate of 0.15,
and the Xavier initialization. At early plateaus and dips
in performance we implemented learning rate decay with
starting learning rate 0,001, cutting the learning rate in half
at each application. We stopped when the model appeared to
converge.

D. Hyperparameter choices

There were various hyperparameters in our network archi-
tecture to optimize. The most notable were the following:

1) The pos_weight multiplier weights the first term in
the loss function. (It is 5 in our final model, as listed
above.) A higher pos_weight encourages the network
to make positive predictions, which effectively helps
to balance class sizes between positive and negative.
This imbalance is a priori the heart of this segmentation
problem as most lesions take up only a small portion
of the given MRI slice. We tested pos_weight values
of 100, 50, 25, 5 and 1.

2) The size of the largest fully connected layers has a
strong impact on performance. In our final implemen-
tation this layer has 512 nodes, but we tested both
1024 and 256 as well. The 1024 model performs excep-
tionally poorly, but the 256 model displays interesting
behavior, explored in the Experiments section below.

‘ Network | Training Method | SDC |
Encoder/Decoder by_slice 0.40
DualNetFC by_slice 0.38
Encoder/Decoder by_scan 0.16
DualNetFC by_scan 0.21

Fig. V. The Sgrensen-Dice coefficients for DualNetFC and the baseline
Encoder/Decoder network when trained by_slice and by_scan.
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Fig. VI.  Plots of the Sgrensen-Dice coefficient vs iteration for
DualNetFC and the standard Encoder/Decoder network

E. Results

In Fig. V. we have compiled the Dice coefficients for
DualNetFC and the baseline Encode/Decoder network, both
trained by_slice and by_scan. We see here that while the
Encoder/Decoder network attains slightly better performance
when trained by_slice, DualNetFC performs better when
trained by_scan, which is the significantly harder and more
practical task. This is somewhat surprising given that Dual-
NetFC is about 1/5 the size of the Encoder/Decoder network.

F. Discussion

Due to the constrained size of the dataset, we did not
use a test set. We believe that this severely limits the scope
of our results. While containing 43,281 horizontal slices, the
ATLAS dataset only contains 229 complete scans. Each scan
contains 188 horizontal slices. Within a scan, those slices
that contain a lesion typically contain strongly correlated
lesion masks. When trained by_slice, we suspect that our
network simply memorizes the shapes of these 229 different
lesions and the bottom pathway provides context for which
memorized shape to choose from. While this is a bit of a




simplification of what is actually happening, the dramatic
decrease in performance of our model when we move to
by_scan training suggests that some amount of this sort of
memorization occurs. It is unclear if this is the fault of the
network architecture or simply due to the constrained data
size. Note that the same problem is present in the baseline
Encoder/Decoder Network to a much greater extent.

A concern which can be more directly attributed to the
architecture is the fact that our model severely underfits the
training dataset. The Sgrensen-Dice coefficient on the train-
ing set converges to approximately 0.60. Even when trained
on a small selection of 200 examples, this coefficient stays
below 0.80 even after several hundred epochs. Similarly, the
loss on the training set converges to 0.24. All of the other
models in the Experiments section below converge to this
value as well, which suggests that the network architecture
is at fault.

VI. EXPERIMENTS

The network detailed above was just one in a series of ex-
periments we performed with the dual-pathway architecture.
We considered the following alternate architectures for the
two pathways. Graphs of the Sgrensen-Dice Coefficient for
each are shown in Fig. VIIL

1) DualNetVeryFC: This model introduces four smaller
fully connected layers in the middle of the upper path-
way. This model was so large that it was essentially
unable to converge.

2) DualNetBigBlue: This model passes the entire image
through the lower pathway, rather than take local crops.
The sharp decrease in the Sgrensen-Dice coefficient
suggests that DualNetFC does use the upper pathway
and is learning from the local croppings.

3) DualNetOverlap: This model most directly resembles
the one implemented in [3]. It uses 64 x 64 crops for
the “green” window which are passed through convolu-
tional layers using “VALID” padding, so that the final
output size at concatenation was still 50 x 50. This has
the effect of overlapping the regions considered by the
different croppings so that there is an extra layer of
context for the network. Interestingly, this also saw a
decrease in performance. It seems that the introduction
of any sort of pooling in the upper pathway (whether
that be via honest pooling layers or though convolu-
tional layers with “valid” padding) forgets too much
information and make accurate segmentation difficult.

4) DualNetFC256: This model is identical to DualNetFC
except that the largest fully connected layers now
only have 256 nodes rather than 512. This effectively
decreases the number of parameters in the network by
a factor of two. The plots in Fig. VIII. show that this
model achieves a high SDC when trained by_slice. Un-
fortunately, when trained by_scan, this model achieves
a DSC of near zero and seems to be guessing randomly.
We suspect that the smaller fully connected layers are
bottle-necking the model and forcing it to memorize
the data. This renders it useless when training by_scan.

| Network | Maximum SDC ‘ Num. Parameters |
Encoder/Decoder 0.40 93,705,297
DualNetFC 0.38 19,469,835
DualNetVeryFC 0.26 45,233,281
DualNetBigBlue 0.20 39,064,203
DualNetOverlap 0.31 19,592,925

Fig. VII. Encoder/decoder is a simple conv/fc/deconv, DualNetVeryFC

has fully connected layers in the upper pathway, DualNetBigBlue passes
the entire input as the blue crop, and DualNetOverlap overlaps the green
crops.

DualNetBigBlue DualNetVeryFC

DualNetFC256 DualNetOveriap

Fig. VIIL Plots of the Sgrensen-Dice coefficient vs iteration for
each of our experimental models when trained by_slice. Note that only
DualNetFC256 achieves performance at the level of DualNetFC.

VII. CONCLUSIONS/FUTURE DIRECTIONS

While there is still much work to be done analyzing the
ATLAS dataset, we believe that our discussion of dual-
pathway networks as least begins to explore their possi-
ble application here. The success of DualNetFC over the
Encoder/Decoder network when trained by_scan offers at
least some evidence that this approach is worth pursuing.
A natural next step would be to continue following the
methods of [3] and employ a three-dimensional variant of
DualNetFC which operates on small crops of an entire brain
scan, rather than just one two dimensional slices. This will,
however, even further exacerbate the problems that we have
already experienced regarding the small size of this dataset.
One possible solution would be to do some sort of transfer
learning directly from the model in [3], as they achieve a very
high DSC of approximately 0.60 when training their model.
An improvement using this approach would be interesting
given the qualitative difference between the T1-weighted
MRI scans in ATLAS and the unweighted ones in the ISLES
dataset that they train on.

CoDE
The code for this project is available at https://
github.com/wungemach/atlas.
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