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Abstract

President Donald Trump’s Twitter account has been noted for its distinctive writing
style. We attempt to build a recurrent neural network that trains on 2,829 @real-
DonaldTrump tweets in order to generate new tweets in the style of the president. A
neural network that trains on words rather than characters and consists of 4 bidirec-
tional LSTM layers generates tweets that closely resemble @realDonaldTrump’s
tweets. While the addition of layers has minimal impact on the quality of the output,
using dropout regularization reduces training time and overfitting noticeably.

1 Introduction

President Donald Trump’s Twitter account has been noted for its distinctive writing style by linguists
and media pundits alike. In this paper, we explore whether neural networks can generate tweets in
the style of President Trump’s Twitter account.

The input to our algorithm is a dataset of 2,829 recent tweets issued by the @realDonaldTrump
Twitter account. We then use a recurrent neural network to output a generated tweet in the style
of @realDonaldTrump. After reviewing the literature and describing the dataset further, this paper
explores architecture and hyperparameter choices of the neural network.

2 Related work

World leaders’ language choices are regularly studied by historians and linguists. Globally, scholars
have performed textual analyses of presidents, including comparing two Korean presidents’ inaugural
addresses to examine the links between language and policy [1] and analyzing Czech presidents’ New
Year speeches before and after the collapse of the Berlin Wall [2]. In the United States, historians have
identified that speaking to the public is one of the most significant roles that a president plays and that
presidents make use of deliberate linguistic choices (e.g., invoking symbols) in their communications
[3]. However, presidential scholars have noted that the linguistic style of current U.S. president,
Donald J. Trump, differs significantly from precedent, with increased use of asides, superlatives, and
verbal intensifiers. Historian Kristen Kobes Du Mez said of President Trump’s linguistic style: "This
kind of pushes the limits of linguistic analysis." [4]

For linguistic applications, recurrent neural networks (RNNs) are widely used. In the 1980s, RNNs
were first introduced to learn strings of characters. Since then, RNNs have been used to learn patterns
that follow a sequence or vary with time. They have been used to forecast electric load, predict
financial movements, and track head movement for virtual reality systems [5]. Although in the 1990s,
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many natural language generation systems involved creating structured messages (e.g., "the next train
leaves at 10 am") [6], there was also a certain level of research in n-gram language modeling [7].

In 2003, Bengio et. al. propose using feedforward neural networks for language, using a feature
vector with shared parameters across words that feed into a tanh function into a softmax function [8].
However, a deficiency cited by Mikolov et. al. (2010) is that the network must fix the length of the
context. Instead, they apply RNNs that can learn long-term dependencies [9]. In 2012, Sundermeyer
et. al. use a Long Short-Term Memory (LSTM) model that becomes prominent in future language
models [10].

RNNs and LSTMs have been widely used for language tasks since then. Two prominent use cases
include machine translation [11] and automated image captioning [12].

3 Dataset and Features

The dataset consists of 2,829 tweets issued by the @realDonaldTrump Twitter account between
March 4, 2017 and May 31, 2018. In order to capture only tweets representative of President Trump’s
writing style, retweets by @realDonaldTrump of tweets from other accounts were excluded from the
dataset. Replies by @realDonaldTrump were included, as they represent original content issued by
the account.

Tweets were extracted using the TwDocs tool. Some pre-processing was required: President Trump
uses a significant number of ampersands that were extracted as "&amp" and therefore were manually
replaced with the proper character. Tweets were subsequently saved in UTF-8 encoding so as to be
properly read by algorithms. Pre-processing and normalization required for training varied by model
and will be described in the subsequent section.

4 Methods and Experiments

To generate tweets reflective of President Trump’s style, two broad model architectures were explored:
(1) character-based models and (2) word-based models.

4.1 Character-based models

Multiple LSTM-based character models were developed using the keras package, based on a model
developed by Sagar Jaiswal [13]. First, data is pre-processed, so that the input is a string of 100
characters and the output is the single character that follows the 100 characters. Accordingly, the data
is pre-processed by creating a list of input data that consists of sequences of 100 characters from the
tweets, creating a list of output data that consists of the single characters that follow the 100-character
strings, and converting them both to integers using a dictionary. Data is reshaped and then normalized
by dividing each character’s integer representation by the total number of unique characters. The
output is converted into one-hot vectors.

The base model uses one LSTM layer that contains 256 LSTM units, applies dropout regularization
that drops out 20 percent of neurons, and applies a softmax activation layer. Adam optimizer is used,
with learning rate of 0.001, betal of 0.9, and beta2 of 0.999.

Multiple model architecture variants were tested. One variant experimented with the impact of two
LSTM layers, such that the full model architecture consists of LSTM, dropout, LSTM, dropout, and
softmax activation. One variant tested the the impact of a single bidirectional LSTM layer instead
of a single feedforward LSTM layer. Another variant tested the impact of two bidirectional LSTM
layers.

In addition, in one experiment related to hyperparameter tuning, the learning rate in the base model
was increased to 0.01 from 0.001.

In all models, the loss function used is categorical cross-entropy, or — > . y;l0g¥;.



Table 1: Summary of model results under varying architectures and parameters

Model Description Loss Sample output
Character: Base 1-layer LSTM with 1.8479 (after uic oi the resuic oi the resuic oi the
model dropout, learning rate 96 epochs) resuic oi the resuic oi the resuic oi

=0.001

the resuic oi the resui

Character: Base
+ Faster learning

I-layer LSTM with
dropout, learning rate
=0.01

2.0593 (after
19 epochs)

people of the fake news the searet
wery searri the people of the fake
news the searet wery searri t

Character: Two-
layer

2-layer LSTM with
dropout, learning rate
=0.001

1.5376 (after
50 epochs)

and the fake news media is a great
honor to welcome the united states
and the people of the world fo

Character: Base
+ bidirectional

1-layer bidirectional
LSTM with dropout,
learning rate = 0.001

1.9569 (after
36 epochs)

the sireate niane on the uarl and seau-
rity oo the sases and secori big teey
io the uasling onft to

Character: Two-
layer + bidirec-
tional

2-layer bidirectional
LSTM, learning rate =
0.001

1.3889 (after
26 epochs)

the fake news media is a great state
of the fake news media is a disaster

Word: Base 4-layer, 128-cell 1.9735 (after A thateres’, my of ranto the w/ Yomil
model (on Bidirectional LSTMs, 10 epochs) resut dime the we the secuse, GRIO
characters) learning rate = 0.004
Word: Base 4-layer, 128-cell  0.2435 (after general john kelly is doing a great
model Bidirectional LSTMs, 100 epochs)  job as chief of staff . all americans
learning rate = 0.004 strong on mexico on this our country
vote for against the next administra-
tion . if no support !
Word: Base 4-layer, 128-cell  0.2577 (after steve bannon will be interviewed

model + dropout

Bidirectional LSTMs,
learning rate = 0.004,

100 epochs)

by @ seanhannity at 9pme on @
foxnews

dropout = 0.2
Word: Base 8-layer, 128-cell  0.2875 (after michael wolff is a total loser who
model + dropout  Bidirectional LSTMs, 150 epochs) made up stories in order to sell this
+ 8 layer learning rate = 0.004, would go up classified information !

dropout = 0.2

spending !

4.2 Word-based models

Multiple word based models were developed using the keras package, based on the textgenrnn
model created by Max Woolf [14]. Input data is a line delimited text file of tweets. The data is
pre-processed using keras tokenizer which turns each word into an integer. Each integer corresponds
to a token in a dictionary (with a 10,000 default embedding size). After the input data is encoded, it
is randomized and broken into mini-batches for training.

The base model feeds the embedding into two sequential LSTM layers that contain 128 LSTM units
each. The embedding and outputs of both LSTM layers are concatenated and fed into an attention
layer that calculates the weighted average of inputs over time and outputs a context vector. Last, a
dense layer applies a softmax activation. RMSprop is used with with learning rate of 0.004. As with
the character-based model, the loss function used is categorical cross-entropy.

5 Results and Discussion

Overall, we find that a word-based model using bidirectional LSTM layers can produce tweets that
resemble the tweets of President Trump. We organize our discussion of results into multiple sections.

5.1 Character-based model vs. word-based model

A one-layer character-based model does not seem able to produce output that resembles the president’s
tweets, in either words or syntax. However, a two-layer architecture that trains on characters can



produce words and phrases that resemble President Trump’s tweets. For example, the phrase "fake
news media" is produced by a two-layer architecture. In addition, some phrases such as "United
States" and "people of the world" represent English phrases that the president would use. Although
these phrases are consistent with the English language, the output does not represent coherent
sentences or tweets.

Word-based models, on the other hand, are able to produce coherent sentences or tweets. Phrases
such as "The fake media is becoming more and more powerful" and "Dow, S&P 500, and NASDAQ
close to make America great again" represent proper grammar and also are in a style similar to the
president’s tweets. Therefore, we can conclude that word-based models more quickly learn plausible
syntax and common phrases and can better generate tweets representative of the style of the president.

5.2 Learning rate tuning

One character-based model experimented with increasing the learning rate from 0.001 to 0.01.
Increasing the learning rate resulted in no meaningful decrease in the runtime of each epoch. However,
the loss reached a lower point faster with a higher learning rate than with a lower learning rate, but
not by a material amount. In the single-layer character models, with a learning rate of 0.01, at 19
epochs the model achieved loss of 2.0593, in comparison to the model with a learning rate of 0.001,
which achieved a loss of 2.1320 at 19 epochs.

5.3 Dropout

By increasing dropout from 0 to 0.2 in the word-based model, the model converged to a low loss
much more quickly (Exhibit 3). Dropout also appears to reduce overfitting in tweets generated. A
comparison of tweets generated from the model with dropout to models without dropout showed a
wider variety of tweets and fewer overfit phrases in tweets generated from the dropout model.

5.4 Bidirectional layers

The replacement of the feedforward layers with bidirectional layers in the two-layer character-based
models reduces the number of epochs required to achieve low levels of loss. Over 50 epochs, the
two-layer character-based model achieved a loss of 1.5376. Replacing the feedforward layers with
bidirectional layers allowed the model to achieve comparable loss in just 16 epochs. However, each
epoch took considerably longer to train with the bidirectional layers (1920 seconds per epoch for the
bidirectional two-layer model, vs. 889 seconds per epoch for the feedforward two-layer model).

5.5 More layers

For the character model, adding a layer was the most effective change from the base model. With an
additional layer, the model went from unable to reproduce President Trump’s Twitter style to able to
reproduce words and phrases. For the word-based model, adding four layers shows little marginal
improvement to ultimate loss or generated tweet quality. Further with additional layers, number of
epochs and training time needed to achieve a low loss increased significantly.

5.6 Exploding gradients

Exhibit 2 suggests that the character-based models with the higher learning rate and the bidirectional
layer face the challenge of exploding gradients, in contrast to the base model. As discussed in
Pascanu et. al. (2013), exploding and vanishing gradients are common issues with recurrent neural
networks, and exploding gradients can be addressed with gradient norm clipping [15]. This was not
implemented once the overall superiority of the word-based models was observed.

6 Conclusion

We find that a neural network that trains on words rather than characters and consists of 4 bidirectional
LSTM layers with dropout generates tweets that closely resemble @realDonaldTrump’s tweets. A
word-based model was superior to a character-based model, given the character-based model faces
the twin challenge of learning words and syntax. The addition of a layer greatly enhances the



character-based model, but the addition of four layers has minimal effect on the word-based model.
We also see that the character model faces the risk of exploding gradients, as evidenced by the spikes
seen in Exhibit 2, while the word-based model faces some risk of overfitting. Future iterations of this
model should begin with the word-based model and focus on reducing levels of overfitting.
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Exhibit 2: Loss under varying architetures and parameters
for model with one LSTM layer
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8 Contributions

Both team members take equal responsibility for this paper.
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