InstaFashion: Clothing Detection and Classification with YOLO
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Online shopping is an exponentially growing market, but tracking down
that perfect shirt or pants you see someone wearing on the street is still
really difficult. Our work, InstaFashion, allows users to identify clothes
from just an image. We compared 2 architectures, YOLO v1 and VGG-
16 as a baseline.

Dataset

Dataset: Images of people photographed in everyday settings with

bounding boxes (t,,w,h) around items of clothing

Sample data point: {"photo": 2281, "product™: 7871, "bbox": {"width":

112, "top™: 335, "height": 204, "left": 59}

Specifications:

« 18k images

« 31k bounding boxes

« 11 classes: bags, belts, dresses, eyewear, footwear, hats, leggings,
outerwear, pants, skirts, tops

Preprocessing

(1) Convert training dataset into 3D tensor of size 18397 x 15 x 6
[number of images x max number of bounding boxes per image x (id,
class, x_c,y_c, w, h)]

(2) Resize photos into standardized size 448 x 448, filling in black
margins vertically and horizontally, as needed

(3) Split dataset into approx 90-5-5: training (16439), validation (979),
and test sets (979)

(4) For training the baseline we cropped images to bounding boxes and
then resized to 224 x 224 before feeding them into the network, which
was trained to minimize categorical cross-entropy loss.

The YOLO Model

We implement YOLO v1 with a 7 x 7 grid and 5 bounding boxes per
grid. We use pretrained weights trained on ImageNet for the first 20
layers of the model, and train the final four convolutional and two fully
connected layers on our dataset to fine-tune our model. We trained two
models following this architecture: one with a static learning rate (1e-5),
and one with a dynamic learning rate that changed over the course of
training.
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The Baseline Model

For the baseline we implemented a simple sliding window model that
performs image classification on each window using VGG16 model. We
take the feature extractions from the KERAS pretrained VGG16 model
and then train two fully-connected layers to learn class probabilities on
our dataset. This very crude model is not very good, but is decent
baseline to compare our YOLO models against.

Loss Results
Static LR: 5018.02041015625
Dynamic LR: 7850.24677734375

mAP Results
Static LR: 0.719
Dynamic LR: 0.689
Baseline: 0.559
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Our best YOLO model achieves a test mAP of 0.720,outperforming the
baseline sliding window model, which only achieves a mAP of 0.56.
Further validating the correctness of our YOLO implementation, our test
mARP is similar to what the original YOLO paper achieved on the
PASCAL VOC dataset.
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