

Backprop Considered Harmful?

Hybrid-Evolution Strategies for Supervised Learning Training

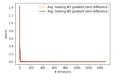
Andrew Bartolo | bartolo@stanford.edu

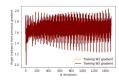
Summary

- Training supervised learning models is computationally intensive and difficult to parallelize across multiple compute nodes
- In particular, batch gradient descent requires memoizing many gradients and potentially broadcasting parameters over a network.
- In this project, we assess the feasibility of Evolution Strategies for performing supervised learning training. Evolution Strategies are a stochastic optimization technique most commonly used in reinforcement learning.
- We found that even for simpler nets, effective Hybrid-ES requires extensive hyperparameter tuning, but its potential memory + data savings mean we should keep investigating it.

Investigating the Gradient

• We first characterized the behavior of the full gradient, as we want to mimic it stochastically.

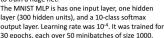




- Periodicity of the figure is (probably) due to cycling over minibatches The norm of the gradients quickly converge, likely due to L2

Baseline Network

Most of the algorithm design exploration was done using a multilayer perceptron (MLP) on the MNIST dataset. This allowed for relatively quick iteration and figuring out what worked/what didn't without having to train a huge net.



The Hybrid-Evolution Algorithm

Parallel BGD (N worker nodes) Algorithm

- Split training set T into N subsets, T_n For every iteration i, each worker node
- forward $prop(T_n, \theta)$ $backward_prop(T_n, \theta)$
- 5. $\theta_n := \theta_n - \alpha d\theta_n$
- $transmit(\theta_n)$
 - receive($\theta_{1...n-1, n+1...N}$) $\theta := combine(\theta_{1...N})$
- BGD BGD BGD

Parallel Hybrid-ES (N worker nodes) Algorithm:

- If iteration i % r == 0: $forward_prop(T, \theta)$
- backward prop(T, θ) $\theta := \theta - \alpha d\theta$

9.

- For K attempts, each worker node:
 - $d\theta_{n,k} := d\theta + N(0, \sigma^2)$ $\theta_{n,k} := \theta \alpha d\theta_{n,k}$
- $\theta_n = argmin forward_prop(T, \theta_{n,k})$
- 10. transmit(<rseed_, best cost_>) receive(<rseeds, best_costs>) 11.
 - θ := combine(<rseeds, best_costs>)

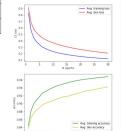
Results + Analysis

	Training Set Accuracy	Dev Set Accuracy	
Reference	99.54%	96.57%	
Assisted H-ES (r = 1)	99.85%	96.08%	
H-ES, r = 2	96.80%	94.21%	
H-ES, r = 3	95.34%	93.06%	

- Goal isn't to beat BGD at its own game, but to parallelize BGD in an approximate but muchlower-overhead way.
- Hybrid-FS can make forward progress without needing to compute the full gradient.
- May be better for driving training progress in later iterations (once gradient has stabilized).
- Optimal σ^2 : empirical gradient component var.
- Optimal r: with r too big. H-ES loses information from the full gradient and can't make progress.

Training Set 50,000 examples 10,000 examples Dev Set

Losses and Accuracies, H-ES, r = 2, $\sigma^2 = 1.25$



Hyperparameters + Savings

Hyperparameters:

- K, the number of random perturbations each worker node makes (multiply by N)
- r, the interval for computing the full gradient (as opposed to a stochastic update)
- σ², the variance for the random shift matrices

	Runtime	Memory	Net BW
H-ES, r = 2	120.8%	66.7%	50.0%
H-ES, r = 3	127.7%	55.6%	33.3%

- Model uses the components defined in the algorithms section.
- Runtime doesn't take into account the cost of sending over network! (So this is a conservative estimate.)
- Network BW not just data: delay, energy, etc
- Backprop expected to be costlier, but wasn't (might be worse for larger nets). Memory + BW benefits increase with net size!

Future Work

- Try adaptively setting the σ² variance (shift scaling factor).
- Try stochastically adjusting different components of the gradient.
- Try learning some features of the gradient itself... ©
- Try sampling random shifts from a non-normal distribution.
- End goal: compress the weights being sent over the network
- Simulate across a real cluster, using heterogeneous (CPU, GPU, TPU) HW.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient- based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998. Dataset from http://yann.lecun.com/endb/mnist/. [2] Evolvion Strategies as Zealable Alternative to Reinforcement Learning. Genetal Bog. https://fblog.openial.com/evolution-strategies/ [3] Evolution Strategies as Zealable Alternative to Reinforcement Learning. (full paper) https://arniv.org/abs/1703.03864

[4] Gradient-Free Optimization. Stanford AA222. http://adl.stanford.edu/aa222/lecture notes files/chapter6 gradfree.pdf.