

CNN-based seismic facies classification from 3D seismic data

Wei Chu and Iris Yang Department of Geophysics, Stanford University

Motivation & Objective

- Traditional seismic facies classification demands tremendous human labor and time with lesscontrolled quality check
- Develop a 3D Convolutional Neural Network (CNN) model to accurately classify seismic facies from 3D seismic data

Dataset

- 3D seismic data (size = 651x951x452) from the Netherlands Offshore F3 block
- Labels on one inline section

Input data are sub-cubes of size 65x65x65 around labeled central voxel

using trained CNN model

Modified LeNet-5 3D CNN design

Sparse sampling scheme for input sub-cubes

- 40,000 training, 10,000 validation, and 10,000 test samples
- Learning rate of 0.001 except base case
- 2 epochs w/ mini-batch size of 32 or 128
- Cross-entropy loss w/ Adam optimizer

Conclusions

- CNN model gives geologically reasonable and consistent predictions.
- New CNN design significantly improves training accuracy in early training stage.
- New CNN + sparse sampling cuts running time by 50%, and boosts test accuracy to 0.9977.

Results

Predicted on two xline sections

Metrics of 4 CNN models

Model	cube size	Step size	batch size	# of para.	Running time	Train'g acc	Val. acc	Test acc
Base	65³	1	32	297,697	7min16s	0.9736	0.9857	0.9855
"LeNet-5"	65 ³	1	32	8,478,817	29min28s	0.9974	0.9854	0.9853
"LeNet-5"	33 ³	1	128	522,337	167s	0.9959	0.9488	0.9455
"LeNet-5"	33 ³	2	128	522,337	187s	0.9990	0.9961	0.9977

We acknowledge PetroChina for initiating this project and providing financial supports.