

Video Segmentation within image frames for autonomous driving. Category: Computer Vision

Team Members: Wenfei Du, Hiro Tien (Kai Ping), Mayank Malhotra

Motivation/Introduction

- . Autonomous vehicles are not able to quickly identify different kinds of moving items on the road
- Our project helps autonomous vehicles segment movable objects
- We're using a convolutional neural net (CNN) similar to VGG 16-layer net and then put a multilayer deconvolution network with FCN and Segnet (with Maxpool) variants

Architecture/Models

We learn the network on top of the convolutional layers adopted from VGG 16-layer net. We use two models for deconvolutional part:

- Fully Convoluted Network (FCN) with learned upsampling layers that are connected to previous layers in the network and
- SegNet Encoder Decoder Architecture, further specifies the un-pooling layers to achieve better efficiency and performance.

Illustrative

Dataset

- The dataset is provided by Baidu through CVPR 2018 WAD Video Segmentation Challenge on Kaggle. The competition evaluated seven different instance-level annotations, which are car, motorcycle, bicycle, pedestrian, truck, bus, and tricycle.
- The rest are combined into a background class. Images are colored, each pixel is categorized into one of the 8 categories The final dimensions of the picture are 564px*224px.
- Total of 44 videos provided with thousands of frames per video.
- Most training images were more than 99% background, and we extract 244 positive examples with less than 90% background and sample 244 negative examples.
- 6. We train on 488 samples and validate on 380 samples.

Discussion

- We compare FCN and Segnet based models with no regularization as the baseline.
- We use convolutions for previous and next image in time along with current image in deconvolution.
- 3. We add regularization to the best performing FCN model.
- Despite removing 90% background images and using weights, we continue to predict background after about 5 epochs of training (about 10% false negative).
- 5. In the first 5 epochs, the predictions are better balanced (about 5% false negative and false positive).
- . The low number of training images is a major limitation.

Future Scope

- We have tested two of the prominent architectures for image segmentation.
- 2. In the future:
 - Collect more positive example images from videos
 - 2. Tune number and size of layers
 - . Tune regularization
 - 4. Better model correlations in time and in video information (camera side and road)
 - . Add object detection model prior to segmentation

References

- [1]. M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun, "Unsupervised learning of invariant feature hierarchies with applications to object recognition," in CVPR, 2007.
- [2] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in CVPR, pp. 2528–2535, IEEE, 2010.
- [3] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning convolutional feature hierarchies for visual recognition," in NIPS, pp. 1090-1098, 2010.
- [4] C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," in ECCV, pp. 184–199, Springer, 2014.