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Motivation: Given the coarsity of audio inputs and subtle
differences in recording devices, systems that take audio as input
must deal with poor quality audio in order to inform their

actions.

Our contribution: We propose Audio Super Resolution
Wasserstein GAN (ASRWGAN) to enhance the performance of
ASRNet. Inspired by SRGAN, we utilize a pre-trained version
of ASRNet as a generator with a fully convolutional
discriminator inspired from WaveGAN.

Dataset Description and Preprocessing

® Weuse the CSTR VCTK dataset which includes 109 native

both the initial HR signal (labeled real) and corresponding
generator output PR signal (labeled fake)

Final Infrastructure and Explanation
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FINAL MODEL ARCHITECTURE (ASRWGAN)
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Learning Rate = 0.00005
Batch Size = 64 Optimizer = RMS Prop (Beta
Discriminator to Generator Update Ratio = 5
Weight Clipping Parameter = 0.01
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WaveGAN.
® Replace Vanilla GAN with Wasserstein GAN with weight clipping to improve training stability
® Adapt Generator loss function to take into account a content component (MSE) to leverage
super-resolution goal
® Add gradient clipping to prevent exploding losses for both the Generator and/or Discriminator.

® Ledig, Christian etal. Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network
in arXiv 2017.

® Kuleshov, Volodymyr et al. Audio Super Resolution with
Neural Networks in arXiv (Workshop Track) 2017.

® Donahue, Chris et al. Synthesizing Audio with Generative

Adversarial Networks in arXiv, 2018.
®  Arjovsky, Martin et al. Wasserstein GAN in ICML, 2017.
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Results and Discussion

Objective Metrics | Spline || ASRNet || ASRWGAN
[ Signal to Noise Ratio | 148 || 171 | 155 |
| Log Spectral Distance | 82 | 36 | 33 |

Table 1: Objective evaluation of audio super-resolution methods at an upscaling ratio of 4

[ MUSHRA | Sample 1 || Sample 2 || Sample 3 || Average
ASRWGAN 70 61 73 68 |
ASRNet 67 63 75 68.3
Spline 2 31 36 373

Table 2: Average MUSHRA user study scores for each audio sample
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Discussion:
e In general, the ASRWGAN is strong at resolving the highest frequencies of
the HR signal, especially when compared to the ASRNet.
® DPerformance can be boosted further by improving initial discriminator to

leverage the value of a pre-trained generator.

Balancing content loss and adversarial loss significantly affects performance

Overall, model successfully recovers and improve upon baseline performance

over as few as 40 epochs

Future Work

® Attempt to train the networks over multiple speakers in the VCTK dataset.
Adapt model architecture further, specifically for the discriminator, by
experimenting with pooling layers and adding skip connections and/or
residual units.

Modifying loss function, specifically the content loss portion, to more clearly
encode strong audio signal reconstruction.

Hyperparameter tuning for clipping bounds and integration of learning rate
decay.

® Tune discriminator-to-generator training ratio.




