Predicting Cryptocurrency Price Fluctuation Based on
Twitter, Media, and Currency Data With an LSTM-RNN

Alex Fine (afine@stanford.edu)

Motivation

Early in my freshmen year I noticed a fundamental problem
with how many college students handle their money. Many
students graduate thousands of dollars in debt, yet during
college, what little money they do have often sits idle, and
not invested. This issue often stems from the steep learning
curve associated with investing well. My goal, was to give
college students easy access to advanced investment
opportunities, previously only available to the highly-rich
and educated.

Summary

1 built a dynamic RNN with multiple LSTM cells
optimized to predict cryptocurrency price fluctuation on
temporal price data with high granularity. The network is
trained on aggregate Twitter sentiment, media sentiment,
and past currency performance. The network is designed to
easily predicts price change n minutes in the future. I found
the highest accuracy and precision when predicting 5
minutes in the future.

Data

The RNN was trained on “sentiment-based cleansed
tweets” (I removed all spam and promotional tweets by
using a naive bias classifier), media sentiment and previous
price data. In order to increase the training set size, |
aggregated all data from all currencies to train a master
RNN, and then created custom models for each individual
currency.

I

0.80 +3¢5 15.2

+ 4
+ 0
@1 =1

We have ahead the next 3000 years where
,,,,, " ncy will succeed hand

Features

Data: Volume, Price, net Twitter sentiment per minute
Response: All data logged per minute

Data Splitting: Training: 90%, Dev: 5%, Test: 5%
Data Size: Training: 2.38M, Validation: 217k

Models

This algorithm uses a dynamic RNN with 3 layers of
LSTM cells, a state size of 5, and mini-batches. The core
functionality was coded using TensorFlow’s nn libraries.
The algorithm works by first creating an LSTM cell, which
is passed into TensorFlow’s multi RNN cell, which is then
passed into TensorFlow’s dynamic RNN.

2= o (Ws « by,])

re=0 (W, - [h-1,)
he = tanh (W - [r by 1, 24])

he = (1—2) % hp—y + 2+ hy

Results

The algorithm was most successful at predicting results 15
minutes in the future, when the most recent day of price
fluctuation was high. The reported prediction accuracy was
artificially high because the market skewed negative during
the training period. I normalized such predictions, and
reported both.

/Actual Test
/Accuracy

50.86%

52.26%
55.44%

R 50.65% 82.92% 79.06%
53.44% 51.01% 88.95% 86.25%
15T5 57.54% 51.69% 89.06% 90.05%

Discussion

This research conclusively mapped a loose relationship
between aggregate market sentiment, as measured through
twitter, and cryptocurrency price fluctuation. Predicting
price change of low volume currencies was significantly
more difficult than for high volume currencies. I attribute
this to irregular data that can make training challenging.
Additionally, I underestimated the highly influential roll
that market behavior over training data plays on prediction
data. Lastly, this research has made me question the
implementation decision to concatenate the top 100
currencies. This concatenation led to irregular gradient
descent, as depicted below.

Future

Given more time, I would change the model, loss function,
and implement more standard data normalization. To divert
risk, I would like to implement the following custom loss
function (Y = Lables, X = Predictions):

f(x) =

1 \ ¥
1420 /

4 /
¥ 3 u% N /'
Lx) = (= x)2- L/ (P)T-P) o S
References:
[1] (image) Understanding LSTM units vs. cells hitps://stat 1985/

understanding-lstm-units-vs-cells
[2] (image) How does LSTM cell map to layers? https://stackoverflow.com/questions/45223467/
how-does-Istm-cell-map-to-layers

[3] (image) https://twitter.com/MiklosDenkler/status/851922186101239808

Comprehensive references can be found in my paper. These references are just for images featured on the poste.

