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Introduction Baseline Methods References

Different RNN models and architecture are tested for the purpose of extracting
tidal signal & separating tidal part from the non-tidal parts
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focuses on Earth tide, i.e. tidal deformation of the solid Earth

If the downhole pressure is measured in a closed well, then the
periodical earth tide signals could be extracted from the pressure
measurement.
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* Low-pass filtering (LCF)
« Savitzky—Golay filter (suitable for well test data)
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* The left equation is a simplified
equation that illustrates the
relationship between the measured
data and the tidal signal

All the four variables are function
of time and are treated as time- .

1 and location 2 Proceedings., IEEE International
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second cycle
p(2) is the measured

downhole pressure
* p,(t) is the long-term

trend (non-tidal part) L
* Ap(1)is the periodic

* The residual tidal part
is compared with
theoretical tides.
Baseline result

pressure change that is

caused by the earth

tide, i.e. the tidal part
* e(t) is the error part

series data

The objective is to separate the
tidal part from the non-tidal part,
or extract the tidal part from the

raw measurements

Derrormance: Extract the tidal signal
* Location 1 RMS \ Wi
R ‘\M\erlu‘
error: 5.57 /‘“M H ‘/ ‘M\Mn H\“
* Location 2 RMS
error: 1.42

Dataset and Preprocessing

* Data come from two locations, tidal variation at location 1
has a very small amplitude and larger change in long-term
trend while tidal variation at location 2 are large and the
long-term trend is smoother

11757

1 A gl
175 £ " W'“'"“‘\u“‘lr‘,w ,,wm,«‘w] ‘mmy

g
Z1rss
11754

61 362 3463
Days since 0:00 7-7 2003 UTC

W15 2 % a
2016 May

(a) sample data from location 1 (b) sample data from location 2

* The difference in amplitude is due to that location 1 is on-
shore reservoir while location 2 is off-shore reservoir. The
effect of ocean tide is more significant for location 2.

* The data from location 1 is relatively more noisy compared
with data from location 2, and the high-frequency noise
could be removed by transforming the data into frequency
domain through Fourier transform.
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(a) frequency domain (b) smoothed data with Fourier transform

* The smoothed data (ingestible format) demonstrate a
clearer cyclic tidal variation pattern, making it more
convenient to compare with theoretical tides.

pre-train: prediction of theoretical tides
* prediction

LSTM: extraction of tidal signals
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Error analysis: LSTM

NARX: extraction of tidal signals
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