

CS230 - Learning to Play Minichess Without Human Knowledge

Karthik selvakumar Bhuvaneswaran (karthik0@stanford.edu)

Abstract

- Implementing a self play based algorithm using neural nets has become popular after the huge success of Alpha Zero by Deep Mind.
- Replicating the results for games with larger search space like chess requires scaling.
- We develop a scaled up version of alpha-zero-general for the game of Minichess and evaluate our learning algorithm with various baselines.

Keywords: CNN, Reinforcement Learning, Distributed Computing, Monte Carlo search

Introduction

- Self play and improve without any human knowledge.
- MCTS provides provides ground truth to compare and learn.
- 5X5 chess board with Gardner layout will be used for our training.

Figure 1:Popular Minichess Board Layouts

- Single Neural network used for both Policy and Value evaluation
- \bullet We will use the following Loss function

 $l = - \operatorname{E}(v_{\theta}(s_t) - z_t)^2 + \vec{\pi_t} log(\vec{p_{\theta}}(s_t))$

Figure 2:Parameters in network and choice of loss functions

Distributed Architecture

Three major components in self play and learn are:

- Training Data Generator Plays games and generates data for training.
- Trainer Consumes the data from Training Data Generator, compares against MCTS and learns.
- \bullet Pitter Compares two models and publishes a winner model.

Figure 3:Scaling up the training using Distributed Architecture $\,$

Neural Network Model

Figure 4:CNN Layers with both Policy and Value output

Hyperparameter	Value		15-1	
MCTS Simulations	200	Hyperparameter		
Exploration (cpuct)	1	Value Activation	tanh	
Learning Rate	0.0005	Policy Activation	Softmax	
Update Threshold	0.5	Batch Size	128	
Arena Compare	20	Number of Layers	7 (4 CONV, 3 FC)	
Iterations	100	Regularization	Dropout (0.2)	
Episodes	100	Optimizer	Adam	
Data Augmentation	Two way Symmetry	Normalization	Ratch Normalization	

Figure 5:Hyperparams used for Pre-processing and Training

Figure 6:Loss values after each epoch

Training Performance

 2.5 times improvement in training speed with distributed setup.

Figure 7:Single CPU vs Distributed Architecture

Baseline Comparison

Baseline	Color	Won	Lost	Draw
Random Player	White	10	0	0
	Black	10	0	0
Greedy Player	White	10	0	0
	Black	3	0	7
Model Version 1	White	10	0	0
	Black	7	0	3
Model Version 5	White	10	0	0
	Black	0	0	10
Model Version 15	White	0	0	10
	Black	0	0	10

Figure 8:Results of pitting Best Model (V21) with other players

After 21 iterations of training, when evaluated:

- Defeats random player 100%.
- Defeats greedy player 100% when Neural Net takes first turn (White)

Figure 9:Performance of Neural Net over other baselines

Chess Layout	Baseline	Color	Won	Lost	Draw
BabyChess	Random	White	10	0	0
		Black	9	- 1	0
	Greedy	White	10	0	0
		Black	0	10	0
Mallot	Random	White	10	0	0
		Black	9	- 1	0
	Greedy	White	10	0	0
		Black	10	0	0

Figure 10:Trained on Gardner and transferred to other layouts

Observations

Conclusion

- Trained model beats the random, greedy baselines and performs decently on other layouts.
- \bullet Monte Carlo Tree Search and CNN can approximate search space as large as $9*10^{18}$ as we seen in Minichess.
- Parallelizing self play, training and pitter by leveraging cloud services improves the performance substantially

References

- Gardner's Minichess Variant is solved. Mehdi Mhalla et al. arXiv e-print (arXiv:1307.7118)
- Learning to Play Othello Without Human Knowledge Surag Nair et al
- Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.
 Silver et al. 2017a

Contact Information

- \bullet Web: https://github.com/karthikselva/alphazero-general/tree/minichess
- Demo Video:
- https://youtu.be/NxzABCCzYCE
- Mentor: patcho@stanford.edu