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o Implementing a self play based algorithm using
neural nets has become popular after the huge
success of Alpha Zero by Deep Mind.

© Replicating the results for games with larger
search space like chess requires scaling.

* We develop a scaled up version of
alpha-zero-general for the game of Minichess
and evaluate our learning algorithm with
various baselines.
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Introduction

® Self play and improve without any human
knowledge.

© MCTS provides provides ground truth to
compare and learn.

@ 5X5 chess board with Gardner layout will be used
for our training.
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Figure 1:Popular Minichess Board Layouts

o Single Neural network used for both Policy and
Value evaluation
© We will use the following Loss function
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Figure 2:Parameters in network and choice of loss functions
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Distributed Architecture

Three major components in self play and learn are:

® Training Data Generator - Plays games and
generates data for training.

© Trainer - Consumes the data from Training Data
Generator, compares against MCTS and learns.

© Pitter - Compares two models and publishes a
winner model.
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Figure 3:Scaling up the training using Distributed Architecture

Neural Network Model
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Figure 4:CNN Layers with both Policy and Value output
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Figure 5:Hyperparams used for Pre-processing and Training
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Figure 6:Loss values after each epoch

Training Performance

©2.5 times improvement in training speed with
distributed setup.

Figure 7:Single CPU vs Distributed Architecture

Baseline Comparison
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Figure 8:Results of pitting Best Model (V21) with other players

After 21 iterations of training, when evaluated:

o Defeats random player 100%.
o Defeats greedy player 100% when Neural Net
takes first turn (White)

Figure 9:Performance of Neural Net over other baselines
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Figure 10:Trained on Gardner and transferred to other layouts

Observations

teration 1:
ignores to attack the Knight

eration 30: During seffplay at higher
iterations 30+, most games ends in Draw

Hteration 15 Black plays
aggressively, and uses Pawnt.

Conclusion

® Trained model beats the random, greedy
baselines and performs decently on other layouts.

® Monte Carlo Tree Search and CNN can
approximate search space as large as 9  10'® as
we seen in Minichess.

o Parallelizing self play, training and pitter by
leveraging cloud services improves the
performance substantially
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Contact Information

o Web: https://github.com/karthikselva/alpha-
zero-general /tree/minichess

® Demo Video:
https://youtu.be/NxzABCCzYCE
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