CS230 - Learning to Play Minichess Without Human Knowledge
Karthik selvakumar Bhuvaneswaran (karthik0@stanford.edu)

o Implementing a self play based algorithm using
neural nets has become popular after the huge
success of Alpha Zero by Deep Mind.

© Replicating the results for games with larger
search space like chess requires scaling.

* We develop a scaled up version of
alpha-zero-general for the game of Minichess
and evaluate our learning algorithm with
various baselines.

Keywords: CNN, Reinforcement Learning,
Distributed Computing, Monte Carlo search

Introduction

® Self play and improve without any human
knowledge.

© MCTS provides provides ground truth to
compare and learn.

@ 5X5 chess board with Gardner layout will be used
for our training.

Jacobs-Meirovitz Mallett

Figure 1:Popular Minichess Board Layouts

o Single Neural network used for both Policy and
Value evaluation
© We will use the following Loss function

1= —=(vg(se) — 20)* + wilog(py(s:))

p Cross erltropy m Best action to take ?

Vi Mean-Squared Error 7.

Figure 2:Parameters in network and choice of loss functions

Probability of winning ?
(1ango rom -1t +1 - rogression)

Distributed Architecture

Three major components in self play and learn are:

® Training Data Generator - Plays games and
generates data for training.

© Trainer - Consumes the data from Training Data
Generator, compares against MCTS and learns.

© Pitter - Compares two models and publishes a
winner model.

Trining Data Generator Traiing Data

paralel sef layers
(WS 2t e s s3)

Winnet ode!

Figure 3:Scaling up the training using Distributed Architecture

Neural Network Model

g
=Essssii=
=

Figure 4:CNN Layers with both Policy and Value output

Value
NCTS Simulations _[200 Ve
= Value Activation |tanh
Coaring Rote 0005 Policy Activation |Softmax
Update Threshold 0.5 Batch Size 128
[Avena Compare |20 Number of Layers|7 (4 CONV, 3 FC)
trations 100 Dropout 02)
Episoces 00 Optimizer Adem

Figure 5:Hyperparams used for Pre-processing and Training

8 EEs
s

Figure 6:Loss values after each epoch

Training Performance

©2.5 times improvement in training speed with
distributed setup.

Figure 7:Single CPU vs Distributed Architecture

Baseline Comparison

Random | White 10) o o
Player [Black 10| 0] [
Greedy | Wnite 10) o o
Player _[Black 3 o 7
Model | White 10) o 0
Version 1 [Black 7 o 3
White 10| o 0

o

o

o

[Model
Version 5 [Biack 0|
Model | White 0|
Version 15 Biack 0|

Figure 8:Results of pitting Best Model (V21) with other players

After 21 iterations of training, when evaluated:

o Defeats random player 100%.
o Defeats greedy player 100% when Neural Net
takes first turn (White)

Figure 9:Performance of Neural Net over other baselines

[[wmm o o o

Black of 1 o

BabyChess oy [W oo
Black o 1] o

candom |White 0 o o

Raant |Black 9| 1 0|
= white 10| o o

|Black 10| o o

Figure 10:Trained on Gardner and transferred to other layouts

Observations

teration 1:
ignores to attack the Knight

eration 30: During seffplay at higher
iterations 30+, most games ends in Draw

Hteration 15 Black plays
aggressively, and uses Pawnt.

Conclusion

® Trained model beats the random, greedy
baselines and performs decently on other layouts.

® Monte Carlo Tree Search and CNN can
approximate search space as large as 9 10'® as
we seen in Minichess.

o Parallelizing self play, training and pitter by
leveraging cloud services improves the
performance substantially

References

o Gardner’s Minichess Variant is solved. Mehdi
Mhalla et al. arXiv e-print (arXiv:1507.7118)

o Learning to Play Othello Without Human
Knowledge Surag Nair et al

© Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm.
Silver et al. 2017a

Contact Information

o Web: https://github.com/karthikselva/alpha-
zero-general /tree/minichess

® Demo Video:
https://youtu.be/NxzABCCzYCE
© Mentor: patcho@stanford.edu

