Deep Learning Segmentation of Strokes in ATLAS STANFORD

Background and Motivation

Stroke is the leading cause of neurological disability and is
estimated to be the leading cause of lost healthy life-years by

Roelant Kalthof, Andrew Lewis, Brian Triana
CS230: Deep Learning

Model Architecture

Convolution Encoder

2020. Currently, brain images are manually reviewed to identify
strokes in patients presenting with concerning symptoms.
Applying deep learning for segmentation of strokes provides two
potential sources of value.

1) Reliable segmentation of strokes can contribute towards

generation of high quality data for clinical research
purposes. Accurate identification of anatomical regions
affected by stroke is key for creating accurate cohorts of
patients to assess outcomes and the effect of potential
therapies.
Rapid segmentation can be directly applied to the clinical
setting, where rapid diagnosis and treatment is critical for
improving patient outcomes. Approximately 2 million
neurons are permanently lost per minute in which a stroke is
untreated. In other words, time is brain. Rapid and accurate
segmentation of stroke through deep learning can facilitate
the clinical workflow pathway and help improve patient
outcomes after stroke.

We are utilizing the Anatomical tracings of Lesions After Stroke
(ATLAS) dataset (release 1.1) for both our training and testing.
This is an open-source dataset consisting of 304 T1-weighted
MRIs with manually segmented lesions with additional
metadata. Each MRI is represented as a stack of 2D 232x196
image slices, containing 188 axial images. Each patient also has
188 corresponding lesion masks with 232x196 binary labels for
each lesion.

Figure 1. Example Axial Slices and Corresponding Lesion
Masks

Objectives

 Develop a deep learning model to segment images from the
ATLAS database

 Explore data splits by both slice and by patient

+ Optimize the model using hyper parameter exploration

mAxPoOLL* conva IMAXPOOL2*

22) (558,16 22 Fatten | rcrsf | rc2

e [— —_— —_— =] =
Output

(58,49,16) (02 o)
(a5472)

(116,98,8) (116,98,16)
(232,198)

Input
(232,196,1)

Convolution Decoder & Sigmoid

un. Upsample Deconvi Upsample Deconv2
a1t (8 rco (8 flatten 22) (55,16,8) (22) (3381)
— o=, —_— — — —_

Input
(58,49,16)
@50 020y i) (116,98,16) (116,98,8)

(232196,8) (232,19,1)
Output
(232,196,1)

Figure 2. Diagram of Convolutional Neural Network

Training Results

(i)
Figure 3. Training loss by iterations for split by slice (i) and split by patient (ii)
The loss for a split by patient remained highly variable and did not decrease steadily with
increased epochs. We believe that this is a limitation of the sample size when split by
patient.

Input g Predicted Target predicted Target

Figure 4. Example Prediction Results

Segmentation results for the model using split by slices are shown above. In general, the
model seemed to overpredict the size of the lesion. Performance for the split by patient was
very poor and did not accurately predict regions.

w

8%
>
35
a2
g
o=
=3

BUSINESS

Training Results

300

250

200

Batch Size 150

100

50

0
1.E-04 1.E-03 1.E-02 1.E-01
Learning Rate

1.E+00

Figure 5. Randomized batch size and learning rates used for
hyperparameter optimization

Dev Dice
Coefficient

Learning
Rate

Training Dice

Batch Size Coefficient

Dropout

0.002046 39 0.282 0.034 0.040

0.000487 70 0.046 0.436 0.429

0.000558 54 0.015 0.442 0.415

0.939068 207 0.212 0.027 0.026

Table 1. Select results of hyperparameter optimization with
best results bolded

Architecture Variations

We expanded the model with two additional FC layers and
found the following results:

Training Dice Coefficient: 0.351

Dev Dice Coefficient: 0.332
Although these results were worse than our initial model, this
deeper model could likely be further optimized to match or
improve performance of the existing model

Conclusions

We have established feasibility of basic segmentation of stroke
lesions in T1-weighted MRI images

Additional hyperparameter optimization can be performed
Additional architectures can be used to optimize the network,
including a deeper model

Acknowledgements

Special thanks to David Eng for guidance on the project and the
CS230 course faculty for their support.

