Threats Detection for Airport Body Scan Images

Parameters from

Krongrath Suwannasri (krath) and Chayawan Jaikla (cjaikla)

Motivations

- Strengthen algorithm accuracy to reduce false alarms and improve traveler safety
- Reduce processing time compared to the 3D
- · Speed-up the passenger screenings at the airport

Related studies

- Multi-View Convolutional Neural Networks (MVCNN)
 - > 3D shape recognition (Su et al., 2015)
 - ➤ 3D shape retrieval from ShapeNet Core55 (Savva et al., 2016)
 - Cancer screening (Geras et al., 2017)
- Pretrained CNN model
- ➤ VGG-16 on ImageNet (Simonyan and Zisserman, 2015)

Data set

- Originally 1147 examples of full body scan images
- > 219 (19%) of "no threat" examples > 928 (81%) of "threat" examples
- Data augmentation using combinations of:
- ➤ Shifting 20-100 pixels
 ➤ Sharpening and brightening
- Final data sets:
 - > Training set (801 original and 1035 augmented examples)

Development set (230 original examples)

> Test set (116 original examples)

Fine-tuning Multi-View CNN (MVCNN)

Transfer learning MVCNN

Learning curves

Predictions

Evaluation	Fine-tuning MVCNN	Transfer learning MVCNN
Training accuracy	99.7%	100%
Dev accuracy	97.8%	100%
Test accuracy	95.7%	99.14%
Test recall	98.9%	100%
Test precision	95.9%	98.95%
Test f1 score	97.4%	99.5%

The transfer learning is slightly better than fine-tuned MVCNN on this dataset

- Numbers of epoch
- Mini-batch size