

Building Detection from Satellite Imagery

Jasmine Hu, Manan Rai, Vivian Wong

Training IoU

N/A

0.792

0.736

0.803

CS230 Deep Learning Spring 2018

Objective

To seek ways to improve the performance of models on building detection and segmentation on satellite images, our

- Evaluate the performance of a Mask R-CNN with different backbones such as ResNet and DenseNet
- Evaluate the performance of various additions to a typical UNet architecture, and compare them with the Mask R-CNN
- Explore the effect of morphological pre and post-processing on the performance of a model

Data

Sources:

- 1. CrowdAl Mapping Challenge
- 2. Kaggle DSTL Competition

Details

 RGB images with MS COCO or WKT format shape annotations

Train/Test/Val Distribution:

8366/910/910

Model

Test IoU

0.396

0.00023

0.765

0.705

0.788

2. Morphological Processes (Tested in UNet)

_ morphological recorded (rector m crist)		
	Predicted Mask	# of Buildings Detected
No Morphology		121
Dilation in Pre-Processing		101
Dilation in Pre-Processing + Erosion in Post-Processing		103
Watershed (building separation)		625

Discussion

1. Mask R-CNN:

- Baseline with ResNet50 backbone, trained over 40 epochs, performs decently well • DenseNet121 as backbone gives comparable relative performance after 4 epochs
- Training performances of networks vary greatly on the features of different datasets Dense connections slightly improves the IoU for the CrowdAI dataset by 1%
- Residual connections improve performance on Kaggle dataset by 10%
- 3. Morphological Processes:

Mask R-CNN vs. UNet

Basic Mask R-CNN

w/ DenseNet

w/ res. con.

w/ dense con.

Basic U-Net

- · Dilation in pre-processing improves detection but overlaps buildings
- Erosion in post-processing reduces overlap
- Watershed can separate overlapped masks

Future Work

- Using the U-Net as a backbone for the Mask R-CNN
- Train the Mask R-CNN for longer on the DenseNet and compare performance
- Train longer epochs on the U-Net model, and understand better how connections affect training
- Improve the watershed algorithm to separate overlapping building masks with less tolerance

References: [1] Ildoo Kim, "Deep Object Detectors," 2016. [2]Olaf Ronneberger, Philipp Fischer, Thomas Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation"