Neural Generation of Source Code for Program Synthesis

Kensen Shi (kensens @ stanford.edu)

. Motvaton R Model M Anayss

Some existing program synthesizers consider
many “obviously bad” candidate programs:

String uppercase(String str) {
int varl = 0;
String var2 = "";
str = var2;
return "";

}

Objective: generate more natural candidate
programs (methods) for the synthesizer

Task Setup

Input: types in method signature
Output: sequence of tokens

Datasets:
1. GitHub: ~10,000 methods scraped
2. Synthesizer: ~500 solutions plus ~3,000
“helpful” methods, with weights, for 90
different tasks. Train/dev/test split by task.
3. Solutions: subset of only the ~500 solutions

Variable names are canonicalized (e.g., argl,
var2). Some types of tokens are grouped, e.g.,
230 becomes <NumberLit>. Vocab size of 100.

Example training pair:

* Input: long <Class>

e Output: return (argl == null) ?
<NumberLit> : argl . <Field> ;

Architecture:
(previous token, function signature)
— 64-dimensional encodings of tokens
— 2-layer LSTM (512 hidden units per layer)

— FC softmax layer (outputs token probs)
tok3

(<start>, sig) (tok1, sig) (tok2, sig)

Loss Function: negative weighted LL of the
dataset, normalized by the sequence length
(1)
m w(i) [y . Y m ;
<_ZT)I Zlogp(y(x.n) Zw()
=1 g=i i=1
Transfer Learning:
 GitHub dataset is large but doesn’t contain
many interesting control structures
 Synthesizer dataset is small but is exactly

the “style” of code we want to generate
* Transfer from GitHub to Synthesizer

Results: loss (acc.) on Syn. & Sol. datasets

| Model _|Syn-Train| Syn-Test | SokTest |

GitHub 1.4 (69%) 1.3 (71%) 1.3 (72.4%)
Synthesizer 0.5 (84%) 1.1 (68%) 1.1 (69.4%)
Solutions 0.9 (73%) 1.3 (61%) 1.3 (62.6%)

Transfer-Syn 0.3 (90%) 1.0 (74%) 0.9 (75.1%)
Transfer-Sol 0.5 (86%) 1.1 (73%) 1.0 (74.6%)

Example Generated Programs:
Signature: <Class>[] <Class> <Class>[]
for (int il = <NumberLit>;
il <Ineqg> arg2.<Field>; il++) {
arg2[il] = argl.<Method>(arg2);

return arg2;

Signature: int Object String
if (argl == null) { arg2 = <NumberLit>; }
return <Class>.<Method>(argl.<Method>());

Signature: List String[] String[]
ArraylList varl = new ArraylList();
for (String eleml : argl) {

for (String eleml : arg2) { ...

Main Conclusions:
« Transfer learning results in the best models
« Training on full Synthesizer dataset boosts
performance even when tested on Solutions
» The model generates natural-looking code
* The generated code doesn’t always compile.
Most common errors:
o Not understanding types
o Incorrect variable names
o Extraneous or unmatched parens/braces
« Token encodings help the model generalize

Future Work:
» Generate a tree instead of a sequence
* Force the model to follow language rules by
only sampling from allowable options at each
step, possibly with beam search

