Predicting The Success of Crowdfunding
Yan Chen, Yiwen Guo, Chenchen Pan
Department of Statistics, ICME, MS&E, Stanford University

ct

Crowdfunding platform like Kickstarter, where
entrepreneurs and artists seek for support from a large
number of contributors, has become prominent over the
past decade. Better understanding and more accurate
prediction of the success of a project can help both
contributors and creators make better use of their
resources. Previous works applied traditional machine
learning methods, such as SVM and Random Forest,
with only categorical and numerical features, such as
goal and duration, or only textual features, such as
project description and keywords. To our knowledge,
we are the first work to apply deep neural networks
with all three types of features. Using a dataset of
100K+ crowdfunding projects, our model achieves
72.78% accuracy on test set, which is significantly
better than the baselines and the previous works. We
also show that the trained model can help us
understand the success and failure of crowdfunding
projects better.

About The Dataset

Use a dataset from Kaggle [1], which has 108,129

examples in total. 34561 of them are successful, and the

rest are failed.

Tllustrate with a positive example:

— desc: 1 like drawing pictures. and then i color them too. so i
thought i would suggest something for me to draw and then if
someone wants

— goal: 20

— keywords: drawing-for-dollars

- disable_communication: FALSE

JS

- currency: USD

— deadline: 1241333999

~ launched_at: 1240602723

- final,

~ country

tatus: 1

Select input features, which are description, goal,
keywords, disable_communication, country, currency,
and the time difference between when the project is

launched and the deadline

Data Preprocessing

Turn country, currency, and disable_communication
columns into categorical variables having values from 0
to the number of class minus one.

Add a new column called duration, which is computed
by subtracting the date when the project is launched
from the deadline date.

Split into 90% training set, 5% dev set, and 5% test set

Baseline Models

Random forest ifier with 100 trees

Shallow neural network
One-hot vector word embedding with 10K vocabularies
Adam optimization
L2 regularization with the penalizing parameter A = 0.01
binary cross-entropy cost

Flatten

Flatten
Embedding Embedding Dense

. . Other input
Description Description s

Figure 1: Shallow neural network model

RNN Model - Hyperparameter Tuning

Hyperparameters Range
Dropout rate 0-0.5
Number of LSTM layers 2-7

of hidden units in one LSTM layer| 64,128,256

RNN Model

Pre-trained word embedding with 300-dimensional
GloVe vectors

Loss function:
1

T =——3"1y"og(") + (1 - y) log(1 — ")
mig

Adam optimization

Regularization: early stopping + dropout

Our best hyperparameters are as follows:
LSTM state size is 64.
Dropout rate is (.48
FC layer output sizes

Learning rate is 0.000145
« Epoch is 50.

T-n;v-T Dropoutd |
[LsT™e [1sTve |
[Dropous | (D)
[™3 (LLsma |
—_—
| LT LsTM?
= B2

I— H
\m?w thTw J DT
Description Keywords O e

Figure 2: RNN model

Result

Our result is summarized in the following table. We can see
that the RNN model gives the best result.

Models Dev Accuracy
Random Forest Classification 70.00
Shallow Neural Network 69.35
RNN Model 72.42

Table 2: Experiments Results

o ot A e

Discussion

About 26% of errors are due to dataset issues, including
label error (6%) and incomplete information (20%, there
are some missing content with quotation marks in
project’s description)

29% of the errors are due to the fact that the model
sometimes only uses partial information for predictions
("game’, "documentary’ and "film" for success and "app",
'food" and "mobile’ for failure).

The rest 45% of errors are model errors. This is a quite
challenging task for human as well because a human can
only get around 50% correct (no better than random).

Confusion Matrix

Figure 4: Confusion matrix

Future Work

= Address the mismatched data issue. Include more

features of the projects (images, videos).

= Try bi-directional LSTM. Apply batch normalization.

Adjust the loss function to give different weights to the

losses

garding different misclassifications.

Reference

[1] https://www kaggle.com/iamsajanbhagat/kickstarter/data
[2] Kevin Chen, Brock Jones,
Schlamp.Kickpredict: Predicting kickstarter success, Tech-

¢ Kim, and Brooklyn-

nical report, California Institute of Technology, 2013

Learning rate 0.0001-0.01 [3] Sawhney, Kartik, Caelin Tran, and Ramon Tuason. 'Us-

Table 1: Setting of hyperparameters tuning ing Language to Predict Kickstarter Success.

Figure 3: Accuracy and cost for RNN model

