Robot Apocalypse: Generating Code Snippets from Natural Language Descriptions

Jinhie Skarda, Janette Cheng, Priyanka Sekhar, Stanford University, Dept. of Computer Science

jskarda@stanford.edu

| jancheng@stanford.edu | psekhar@stanford.edu

Problem and Motivation
e Automated code generation from natural
language can lower the barrier to building
software and enhance engineering efficiency
e Our approach: Sequence to Sequence model
that takes pseudocode snippets and translates
them to python code snippets.
Data [%

e Oda et al. [1] dataset

e 18,805 Django code to Rawopue
pseudocode snippets
e 80/10/10 train/dev/test split oz, ol
e BLEU scores to compare 0 in, 1ist)
models P Tokenize
Pseudocode Code

2ip together new_keys and keys, convert it to dictionary, assign it to m.
derive the class DisallowedHost from the SuspiciousOperation base class.

Hyperparameter Tuning

Learning Rate Depth Dropout Rate Train Loss Train BLEU
0.47943 8 0.26 2.36E+07 0.00
0.00568 | 0.78 2119 0.00
0.00022 3 0.09 0.3668 9.70

Word-Level Model

Best Model BLEU Score
Learning Rate = 0.0002, Depth = 4, Dropout Rate = 0.66

Test BLEU
31.53

Train BLEU
46.20
Previous Code Generation Model BLEU Scores [4] [5]
Retrieval RL SEQ2SEQ Code Gen
18.6 24.94 35.9 44.6

Dev BLEU
33.53

e Outperforms probabilistic NLP approaches like Retrieval
e Comparable to other sequence to sequence code generation models
e Outperformed by sequence to tree methods

preprocess.sh

SEQ2TREE

1 import numpy as np

3 Write parser for csv which takes input and
4 output files as parameters |

def writecsv(infile, outfile):

B

Train input
for: 0
-, Val: 1
ee>@ f:

Learn + Apply Shims
Byte Pair Encoding

Build Dictionaries

m = dict (zip (new_keys , keys))
class DisallowedHost (SuspiciousOperation) :

Learning rate
Dev BLEU

below 0.001
0.00 most important
0.00 e BLEU and loss
6.09 correlate well

Attention Weights Analysis

host

Output Code

.

ore,

Input Pseudocode

Model consistently learns mappings e.g

‘to’ — ‘lower’ ; ‘convert’ — *.

Model

We use an LSTM with Luong attention adapted from an open source Tensorflow Seq2Seq
model [2] using Softmax Cross Entropy Loss.

ENCODER Code

f— for L val in ___ pets

| } l !
s

. = =G 8N) J : | :

! I g e
iterate through pets array J
Pseudocode DECODER

Figure I: Encoder/Decoder Model Architecture [3]

Character-level Model

Individual characters are significant in code, so we trained some models with a
character-level target vocabulary.

With Normal Loss

self.cache(self):

With Weighted Loss

classe Cache(BaseCache(BaseCache(BaseCache

Target Output
class BaseDatabaseCache(BaseCache):

def _iter_ (self): def clear(self): def _int_ (self, params)

def _init_ (self, *args, **kwargs): default(self, key, delta = 1, table, def _det__(self, *args, ***kwargs):

timeout = DEFAULT_TIMOUT):

Tried character-frequency-weighted
cross entropy loss (results above)

Output biased towards
frequent characters

Future Work

o Use of Abstract Syntax Tree (AST) representations as suggested by Yin and Neubig [4]

o Investigation of higher beam widths, longer train times, and a much larger dataset to
improve our model’s generalizability

[1] hutpsi/ahowebOLnaistiplpseudogen/

[2] hetps://github.com/JayParks/tf-seq2seq

[3] hetpu// ildml.com/2016/04/deep-learning-for-chatbots-part- -introduction/
[4] hutpsi//arxiv.orelpdf/1704.01696.pdf
[5] htpsi//arxiv.orglpdf/1707.07402.pdf

