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Problem and Motivation
e Automated code generation from natural
language can lower the barrier to building
software and enhance engineering efficiency
e Our approach: Sequence to Sequence model
that takes pseudocode snippets and translates
them to python code snippets.
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Hyperparameter Tuning

Learning Rate Depth Dropout Rate  Train Loss Train BLEU
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Word-Level Model

Best Model BLEU Score
Learning Rate = 0.0002, Depth = 4, Dropout Rate = 0.66
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Retrieval RL SEQ2SEQ Code Gen
18.6 24.94 35.9 44.6

Dev BLEU
33.53

e Outperforms probabilistic NLP approaches like Retrieval
e Comparable to other sequence to sequence code generation models
e Outperformed by sequence to tree methods
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1 import numpy as np

3 Write parser for csv which takes input and
4 output files as parameters |

def writecsv(infile, outfile):
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Build Dictionaries

m = dict ( zip ( new_keys , keys ) )
class DisallowedHost ( SuspiciousOperation ) :

Learning rate
Dev BLEU

below 0.001
0.00 most important
0.00 e BLEU and loss
6.09 correlate well

Attention Weights Analysis
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Model consistently learns mappings e.g

‘to’ — ‘lower’ ; ‘convert’ — *.

Model

We use an LSTM with Luong attention adapted from an open source Tensorflow Seq2Seq
model [2] using Softmax Cross Entropy Loss.
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Figure I: Encoder/Decoder Model Architecture [3]

Character-level Model

Individual characters are significant in code, so we trained some models with a
character-level target vocabulary.

With Normal Loss

self.cache(self):

With Weighted Loss

classe Cache(BaseCache(BaseCache(BaseCache

Target Output
class BaseDatabaseCache(BaseCache):

def _iter_ (self): def clear(self): def _int_ (self, params)

def _init_ (self, *args, **kwargs): default(self, key, delta = 1, table, def _det__(self, *args, ***kwargs):

timeout = DEFAULT_TIMOUT):

Tried character-frequency-weighted
cross entropy loss (results above)

Output biased towards
frequent characters

Future Work

o Use of Abstract Syntax Tree (AST) representations as suggested by Yin and Neubig [4]

o Investigation of higher beam widths, longer train times, and a much larger dataset to
improve our model’s generalizability
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