

Robot Apocalypse: Generating Code Snippets from Natural Language Descriptions

Jinhie Skarda, Janette Cheng, Priyanka Sekhar, Stanford University, Dept. of Computer Science jskarda@stanford.edu | jancheng@stanford.edu | psekhar@stanford.edu

Problem and Motivation

- Automated code generation from natural language can lower the barrier to building software and enhance engineering efficiency
- Our approach: Sequence to Sequence model that takes pseudocode snippets and translates them to python code snippets.

1 import numpy as np Write parser for csv which takes input and output files as parameters def writecsv(infile, outfile):

Data

- Oda et al. [1] dataset
- 18,805 Django code to pseudocode snippets
- 80/10/10 train/dev/test split
- BLEU scores to compare models

Pseudocode

zip together new_keys and keys, convert it to dictionary, assign it to m. derive the class DisallowedHost from the SuspiciousOperation base class.

Code

m = dict (zip (new_keys , keys))
class DisallowedHost (SuspiciousOperation) :

Hyperparameter Tuning

Learning Rate	Depth	Dropout Rate	Train Loss	Train BLEU	Dev BLEU
0.47943	8	0.26	2.36E+07	0.00	0.00
0.00568	I	0.78	21.19	0.00	0.00
0.00022	3	0.09	0.3668	9.70	6.09

 Learning rate below 0.001 most important

BLEU and loss correlate well

Word-Level Model

Best Model BLEU Score

Learning Rate = 0.0002, Depth = 4, Dropout Rate = 0.66

Train BLEU		Dev BLEU		Test BLEU	
46.20		33.53		31.53	
Previous Cod	de Genera	tion Model BLE	U Scor	es [4] [5]	
Retrieval	RL	SEO2SEO Cod	le Gen	SEO2TREE	

- 18.6 24.94 35.9 44.6
- Outperforms probabilistic NLP approaches like Retrieval
- Comparable to other sequence to sequence code generation models Outperformed by sequence to tree methods

Model consistently learns mappings e.g 'to' → 'lower'; 'convert' → '.'

Model

We use an LSTM with Luong attention adapted from an open source Tensorflow Seq2Seq model [2] using Softmax Cross Entropy Loss.

Figure 1: Encoder/Decoder Model Architecture [3]

Character-level Model

Individual characters are significant in code, so we trained some models with a character-level target vocabulary.

Target Output	With Normal Loss	With Weighted Loss		
<pre>class BaseDatabaseCache(BaseCache):</pre>	self.cache(self):	classe Cache(BaseCache(BaseCache		
defiter (self):	def clear(self):	defint(self, params)		
<pre>definit(self, *args, **kwargs):</pre>	<pre>default(self, key, delta = 1, table, timeout = DEFAULT TIMOUT):</pre>	<pre>def _det(self, *args, ***kwargs):</pre>		

Output biased towards frequent characters

Tried character-frequency-weighted cross entropy loss (results above)

Future Work

- Use of Abstract Syntax Tree (AST) representations as suggested by Yin and Neubig [4]
- Investigation of higher beam widths, longer train times, and a much larger dataset to improve our model's generalizability

[1] https://ahcweb01.naist.jp/pseudogen/ [2] https://github.com/JavParks/tf-seg2seq [3] http://www.wildml.com/Ja/16/16/deep-14] [4] https://arxiv.org/pdf/1704.01696.pdf [5] https://arxiv.org/pdf/1707.07402.pdf arning-for-chatbots-part-1-introduction/