Convolutional Neural Nets in Climate Model Ensembling

Increasing Spatial Fidelity for Near-Term, Local Predictions Brian Reed I CS 230 Course Project Spring 2018

Introduction

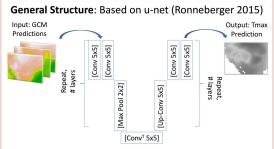
Motivation: Climate models tend to be less accurate over small spatial and temporal scales, even when considered in ensembles.

Approach: Use convolutional architecture to combine predictions of global circulation models & better predict spatial distribution of daily max temperature.

Results: Overall error dramatically drops with CNN, though patterns carry over from individual ensembles.

Data & Features

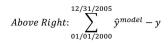
Gridded Daily Hindcasts & Max Daily Temp., 1900-2005


- → Hindcasts: Coupled Model Intercomparison Project 5
- → Observations: Berkeley Earth Surface Temp.
- → Normalized per day to focus on spatial distribution

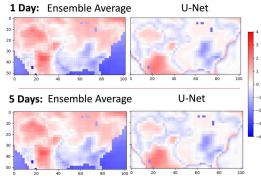
Approaches to Combining Data

Model

Full Architecture: Layers above repeated 2x. Learning Rate 0.001. L2 regularization, penalty 0.01. Batch 128.


Loss:
$$\mathcal{L} = \frac{1}{mp} \sum_{p} \sum_{m} (\hat{y}_{mp} - y_{mp})^2$$
, pixels p , samples m

Training Set: 32,400 images | Test Set: 2,190 images


Model	Training MSE	Test MSE
Ensemble, 1 Day	1.85	1.72
CNN, 1 Day	0.434	0.402
Ensemble, 5 Days	1.78	1.65
CNN, 5 Days	0.495	0.418

Visualizing Results (Top Right):

→ Pixelwise sum of errors. Insight into regional patterns.

Pixelwise Error, Test Set

Discussion & Future

Overall Takeaway: We can learn from pixel-level data within models and better predict actual conditions.

Multi-Day Inputs: Benefit ensembles more than CNN.

Areas with Largest Error: Texas, High Plains, Southeast.

Errors Track with Ecological Zones: Arid zones around TX, forests around Southeast.

With 6 more months: Include data from additional models. Predict temperatures directly. Test different timescales: models typically run for several years.