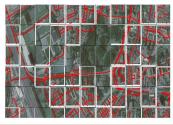


Road Detection Using Satellite Imagery

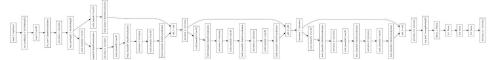
David Kwok, Soumya Patro, and Kate Wharton {kwokd, sopatro, kateow} @stanford.edu

CS230 Deep Learning Spring 2018


Introduction

- Big picture goal: estimate population of refugee camps
- This project focuses on road detection, a first step in estimating population
- Satellite imagery is key input because it is low-cost, open source, and offers near real-time visibility

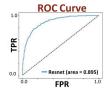
Data & Augmentation


- Satellite Images: Publicly available satellite images from Rotterdam o 10,000 RGB tiles of 256x256x3
 - Resized images to 64x64x3
- Roads Ground Truth Label: Shapefiles indicating coordinates of roads for the same geography -pixel-level boolean mask

Satellite images with road labels

Methodology & Architecture

- 1. Presence or Absence of Road in an image tile using 14-layer ResNet and binary cross-entropy loss function
- 2. Pixel-Level Road Detection using 14-layer ResNet with 4,096 output units (64x64)


Weighted cost function to address class label imbalance (17% road pixels, 83% other):

$$-\frac{1}{p*m}\sum_{i=1}^{m}\sum_{i=1}^{p}(\lambda y_{j}^{(i)}\log\left(a_{j}^{[L](i)}\right)+(1-\lambda)\left(1-y_{j}^{(i)}\right)\log\left(1-a_{j}^{[L](i)}\right))$$

Results

1. Binary Classification

Accuracy: 80% on dev set

Misclassified Examples

Predicted: Road

2. Pixel-Level Road Detection

Precision: 0.15; Recall: 0.34

Input Image

Conclusions

Discussion

- Model recognizes narrow, straight edges as roads; weak at recognizing wide, bent roads
- Automatic creation of labels yielded large dataset, but at the cost of precise labels
- ResNet14 performed much better than deeper networks

Future Work

- Hand label roads; data augmentation
- Investigate differences in performance between shallow and deep networks

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of CVPR, pp. 770-778.

Taspinar, A. (2017). Using Convolutional Neural Networks to detect features in satellite images. Blog post and Github repository. https://github.com/taspinar/sidl.