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Abstract

This project aims to predict human trajectories in dense crowds for robotic motion planning applications. Inspired by
prior work [1] and a recent success in Convolutional Neural Networks (CNN) for sequence-to-sequence tasks, we propose
a data-driven approach that employs CNN for trajectory prediction of multiple pedestrians at once. The performance
evaluation on a publicly available dataset [2] suggests that our approach successfully predicts reasonable trajectories for
multiple pedestrians in different scenes. The extensive error analysis and the trajectory analysis also reveal the cases where
our model has difficulty in capturing unusual pedestrian behavior or social interactions.

1 Introduction

Despite recent advancements in planning and sensing technology for mobile robots, they are still incapable of achieving
fully autonomous navigation in urban environments, especially in crowded scenes with multiple pedestrians. One of the key
challenges in such densely populated scenes is trajectory forecasting of the pedestrians, which is crucial for safe and efficient
robot navigation. A key aspect of the pedestrian motion is social compliance; with no explicit communication humans are
already good at moving towards individual goal locations without hindering the paths of the others, even when there are
no traffic lanes or rules in the scene. This now raises the question of how the robots can incorporate this notion of social
compliance into the prediction model to enhance the safety and efficiency of the planning.

To address this challenging problem this paper proposes a novel data-driven approach to human trajectory prediction,
especially in crowded scenes with multiple pedestrians. Given a history of the motion of pedestrians, our goal is to predict
which trajectories they will follow in the near future up to a certain prediction horizon. In order to model this complex
behavior, we use a deep learning technique to capture both salient and subtle features rather than manually designing them.
Specifically, we propose a novel architecture based on Convolutional Neural Networks (CNN) that takes multiple pedestrian
trajectories as its input and outputs the corresponding predictions. We train the network on a publicly available pedestrian
motion dataset [2] and report the prediction performance.

2 Related work

Traditional methods for trajectory prediction use hand-crafted features to handle the interpersonal aspect of the human
behavior. The Social Force model is one example that aims at simulating such behavior with a combination of attractive forces
guiding the pedestrians towards their goals and repulsive forces encouraging collision avoidance [3]. Although a variety of
extensions are proposed based on hand-crafted energy potentials established by relative distance and acceptable social norms,
these methods have been outperformed by the recent data-driven approaches with the rise of deep neural networks. The
learning-based methods are considered to be more capable of handling the stochastic nature of human behavior as compared
to feature-matching methods [4].

The Recurrent Neural Networks (RNN) [5] are one of the most widely-used learning techniques to tackle the trajectory
prediction problem. Highlighted by the capability to perform sequence-to-sequence modeling, RNNs have been successful in
learning temporal sequences like future pedestrian trajectories conditioned on the trajectory history [6]. Combined with the
Long Short-Term Memory (LSTM) networks [7], the RNN model retains long-term dependencies and avoids the vanishing and
exploding gradient problems. Extensions of the RNN-based approach include the RNN Encoder-decoder framework with a
Conditional Variational Autoencoder (CVAE) for trajectory prediction [8, 9]. This method has an advantage in handling the
multimodality of trajectories by generating diverse hypotheses representing the multimodal probability distributions over
plausible future actions. Generative Adversarial Networks (GANSs) have been also employed to approximate socially-accepted
motion trajectories in crowds [10, 11, 12].
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Figure 1: The proposed CNN-based architecture takes as inputs the first ¢ frames of the trajectories of 2m pedestrians and
outputs the next T frames of the predicted trajectories.

Besides RNNs, it has been recently reported that CNN-based models are well-suited to perform sequence-to-sequence
tasks [13]. While the predictions with RNNs are inherently sequential and the later time-steps cannot be computed until the
earlier ones are completed, CNN takes advantage of its parallelism and can perform training and inference in a more time
efficient manner. Inspired by this recent success, we propose a CNN-based method to perform inference over future pedestrian
trajectories when presented the corresponding history. Our work is closely related to [1], where the authors use a CNN for
predicting pedestrian motion in crowded scenes. However the proposed framework in this paper is different from theirs in that
it is designed to capture spatio-temporal interactions among pedestrians whereas their method can only handle individual
pedestrian motion. This is possible by carefully designing the convolution layers so that the convolution operation runs in the
space dimensions as well as the time dimension.

3 Dataset and Features

We use a publicly available dataset from Stanford Trajectory Forecasting Benchmark [2]. The dataset consists of 37 text
files representing different crowd scenes, each of which contains the Cartesian coordinates of the pedestrians in the same
scene at different time-steps along with the unique pedestrian IDs and the frame IDs. The data are originally collected from
surveillance and drone camera videos taken at various outdoor public locations (e.g. Gates building on Stanford campus).
The data are already manually labeled and pre-processed so that the coordinates of the pedestrians are extracted from the
images and represented in the world frame corresponding to the 2D plane on the ground. Note that we did not use actual
camera images or video streams in the training but only the coordinates.

From this data we build a custom input pipeline ourselves so the input (observed) trajectories and the output (predicted)
trajectories are both represented as a 2D matrix, which is favorable for our CNN-based model. Specifically, each row of the
matrix corresponds to either x or y coordinates of a single pedestrian whereas each column represents different time-steps. A
single input-output pair is made of ¢ + T' consecutive frames where ¢ is the input sequence length and 7T is the prediction
horizon. To construct the matrices from these frames we employ the following three distinct methods, each for a different
purpose as explained below and in Section 4.2. In the first method, we concatenate m pedestrians that exist in the first ¢
frames all the time. The training example is valid if the second T' frames all contain exactly the same pedestrians. This is for
the network to capture the inter-pedestrian features as explained in Section 4.1 in more detail. Note that the value of m
varies across different examples in this case. In the second method, on the other hand, we only use a single pedestrian in
each example. This is to test the basic performance of the network in predicting a single pedestrian motion as well as to
increase the number of training examples that can be used. Lastly, the third method extends the first one and allows some
pedestrians to appear or disappear during the ¢ + 7" frames. The missing coordinates are filled with 0. This is to give the
network a flexibility to use incomplete sequences (i.e. some pedestrians having shorter lengths) as inputs. For all those three
methods the coordinates of all the examples are uniformly normalized so that they range between —1.0 and 1.0.

Unfortunately, the size of the original dataset has been insufficient to effectively train our CNN model. In order to increase
the number of examples we perform data augmentation by rotating and flipping the coordinates. The rotation was performed
before the normalization to ensure that the potentially different normalization factors in x and y coordinates does not affect
the rotated data. For the first and the third method of constructing matrices, we also permute the order of pedestrians that
exist in the rows. For each augmented example the permutation of the input matrix is consistent with the output matrix so
that the joint trajectories remain the same even after the representation changes.



Training Mean Final
Training time Test size / Training Test error-test displacement displacement Average
Models (min)/epoch training size error  error error error error performance
(1) normal, 1173 /9384 =
mix_all_data 0.62 0.13 0.741 0.671 0.07 0.953 1.163 1.058

(2) normal, s'::::::?;; 576/11010=

specify_test_set 1.01 0.05 0.762 0.753 0.009 1.069 1327 1.198
(3) individual, 74818 / 598552

mix_all_data 0.69 =0.13 0.467 0.187 0.28 0.409 0.599 0.504
(4) individual, 34143 / 679902

specify_test_set 0.75 =0.05 0.46  0.698 -0.238 0.834 1119 0.9765
(1) normal, 141/1255=

mix_all_data 0.15 0.11 0.897 1.849 -0.952 1.556 2.103 1.8295
(2) normal,

specify_test_set Input/output 0.13 24/1380=0.02 0.809 0.923 -0.114 1.197 149 1.3435
(3) individual, sequence: 6772 /60279 =

mix_all_data 8/12 0.08 0.11 0.932 0.885 0.047 0.85 1.53 1.19
(4) individual, 3093/61542=

specify_test_set 0.07 0.05 0.916 0.874 0.042 0.937 1.669 1.303

Figure 2: Training and testing results

4 Methods and Experiments

4.1 Network Architecture

Fig.1 illustrates the proposed CNN-based architecture. The input matrix first goes through the embedding layer to form
a 3D tensor, which is needed to perform the convolution at a later step. The tensor is transposed before the convolution
layers; this is to ensure that 1) the convolution operation runs over the spatial dimension across different pedestrians and the
temporal dimension so the network captures spatio-temporal relationship of the pedestrians and 2) the network is agnostic to
the value of m. The dilated convolution with dilation 2, kernel size 3 and stride 1 is used with padding (0,2). The dilation
size 2 is chosen so that x-coordinates of pedestrian 1 is directly correlated to x-corrdinates of pedestrian 2, etc. After the
convolution operation, two fully connected layers unroll the tensor into a matrix, which is transposed back to retain the
output matrix. All the nonlinear activations are leaky-Relu, which has better performance than Relu activations in our case.
Batch Normalization [14] is applied after each convolution layer to mitigate the covariate shift. Furthermore, Dropout [15]
with rate 0.06 is performed between the two fully connected layers to reduce overfitting. The network was trained using Adam
Optimizer [16] with learning rate 0.001 and weight decay 0.001 to minimize the standard L2 loss between the input matrix
and the output matrix. This loss is calculated in the unnormalized coordinates to aim for accurate prediction in the original
world frame. All the hyperparameters have been experimented with different values and the ones associated with the best
performance were used for actual training.

4.2 Training Procedure

Our training models are categorized based on (1) the length of input and output trajectory sequence, (2) the way of how the
dataset were prepared to feed into the proposed network, and (3) how data was assigned into training, development and test
set.

(1) Two types of input and output sequence. Each input and output sequence pair is associated with different numbers of
time steps in that sequence: (¢,T) = (5,5) and (¢,T) = (8,12).

(2) Two methods of constructing one training example. The first method ("normal") includes the valid trajectories of all
pedestrians in one camera frame as one example so that pedestrians with potential social interactions are in the same example
to be fed into the CNN architecture. However, since the number of trajectories can essentially be different from one example
to another, only one example can be trained at a time (stochastic gradient descent) due to the dimension inconsistency. The
second method ("individual") includes one trajectory in one example and completely disregards the temporal relationship
among pedestrians.

(3) Two ways of assigning data into training, dev, and test sets. The first way guarantees data consistency by randomly
mixing data from various crowd scenes and allocating them into the three sets with different ratios. This way of distribution
is primarily used for diagnosing if a gap between the training and dev errors is from the insufficiency of training model
generalization. The second way leaves out data from chosen crowd scenes before data mixing. The mixed data forms the
training set; the leave-out data is split into dev and test sets.

The proposed CNN-based architecture! was constructed as described in Section 4.1 using the PyTorch framework [17]. For
"normal" examples, stochastic gradient descent method was used with 500 epochs; for "individual" examples, a mini batch
method with 100 batches was implemented with 1500 epochs. The batch size was selected to be large enough in order for the
model to be sufficiently distinct from the that with "normal" examples.

Lhttps://github.com/biy001/social-cnn-pytorch
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Figure 3: Loss curves of (¢,7) = (8,12) and the associated accuracy metrics

5 Results and Discussion

The results associated with the 8 models are summarized as a table in Fig. 2. Training and test errors were averaged over
the last 250 epochs for (¢,7) = (8,12), and the last 100 epochs for (¢,7) = (5,5) to avoid oscillations. The mean and final
displacement errors are presented as accuracy metrics. The average performance is the average value of the mean and final
displacement errors. The dev set is not shown since it has the same distribution as the test set. Loss curves of (¢,T) = (8,12)
are shown in Fig. 3 while those of (¢,T) = (5,5) are dismissed due to limited space. Observations from the table and the
loss curves include: (1) models of (¢,7) = (5,5) always perform better than those of (¢,7) = (8,12). (2) Datasets that were
constructed with “individual” examples give much smaller errors in the case of (¢,T) = (5,5) but may not have an advantage
with (¢,7) = (8,12). (3) The choice of whether or not to mix all data before allocating the training, dev, and tests does not
have a clear impact on the performance. Meanwhile, this choice affects the size of the sets, which may be responsible for the
difference in performance.

The performance of the models is largely impacted by the amount of data available for each model. The "normal" examples
represent a larger dataset size but their associated models are trained faster than others. The mean and final displacement
errors are generally correlated to the test error. The error analysis section discusses the training and test errors of different
models; the trajectory analysis section uses trajectory plots to back up the error analysis and show the quality of predictions.

5.1 Error Analysis

That models with (¢,7) = (5,5) outperforms those with (¢,7) = (8,12) can be attributed to the fact that (¢,7) = (8,12)
simply represents a more complicated prediction task. It is always harder to predict longer sequence as the uncertainty of the
pedestrian movement pattern keeps increasing along the time. Another reason could be that the case of (t,7) = (5,5) has a
larger amount of training examples available, which simply facilitates learning.

With (¢,T) = (5,5), the training error has nearly 40% decrease when the model changes from using “normal” examples to
“individual” examples. The test errors and displacement errors all decrease accordingly, yet not as significant as the training
errors. This boost in performance can be explained by the sheer size of the dataset with “individual” examples, which is as
7 times large as that with “normal” examples. With (¢,T) = (8,12), however, “individual” examples give a slightly larger
training error but actually have a smaller test error. It seems that the “normal” model over-fits with insufficient amount of
training data but captures the social context quite well in training with a smaller training error.

The choice of mixing data before assigning to the three sets results in a slightly larger training error regardless of the
length of the input and output sequence, which may be because the training dataset is smaller in this case. Generally, it
does not noticeably affect the variance with training and test errors very close to each other. Exceptions include the case of
(t,T) = (8,12) with “normal” examples. Besides the discussion in the previous paragraphs, that the test set is extremely small
passes on instability to the test performance.

There are several other cases that have a gap between the training and the test errors. The case of (¢,T) = (5,5) with
specified test set experiences the high variance issue. Reasons could include that the test set has a relatively ratio to the
training set or the chosen test set is particularly difficult for (¢,7") = (5,5) with “normal” examples. Another unusual case of
test error being apparently lower than the training error occurs with (¢,7) = (5, 5), “individual” examples, and mixed datasets.
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Figure 4: Left: examples of the typical output trajectory from the test set; right: examples of challenging predictions

Possible explanations could be that the test set is not diversified enough and is actually fairly “easy” for the prediction task.
Some datasets of particular crowd scenes contain a lot more raw data trajectories than others and thus have a higher impact
on the performance. Undesirable predictions could occur when the data are not shuffled sufficiently, which leads to inconsistent
distributions in training and test sets.

5.2 Trajectory Analysis

Our models successfully predict the trend of the pedestrian trajectory with reasonable mean and final displacement errors. All
trajectory examples shown in this section are with (¢,7) = (8,12). The trajectory plot on the left of Fig.4 is a typical example
of the predicted trajectory from the test set. The challenge lies on foreseeing the future trajectory with a sense of uncertainty
inherent from the human movement mode as well as capturing the social interactions among pedestrians. On the right side of
Fig.4 are observations from some interesting cases that give insight on the capability of the predictor. Fig.4(a) shows a case
when a pedestrian frequently changes the direction of movement, yet the predictor outputs a linear trajectory based on the
moving trend of the input sequence. Fig.4(b) is an example showing that two interacting input sequences will not affect the
output sequence. Fig.4(c), however, presents an opposite case the predicted trajectories seem to be too close to each other,
which poses a risk of collision. Fig.4(d) gives a perfect example of what happens for the performance of model (2) "normal,
specify _test set" in the table shown in Fig. 2 to have a relatively low final displacement error but a high mean displacement
error. It is an unusual case that the prediction starts relatively far from the end of the input sequence but manages to go
closer to the actual trajectory at the end. Future work will include detailed investigations on prediction failures.

5.3 Other Experiments

Besides the models described in Section 4.2, experiments have been performed with dataset that have missing coordinates
filled with 0, which is described as the third method of representing the input and output sequences in Section 3. The
dataset constructed with this method has a very large size, which makes the training extremely slow. At an epoch of 200,
the corresponding training error seems to stabilized at a value about 20 times as large as that from any other model. The
learning failure may be attributed to the confusion of the network for treating the filled zero values simply as un-learnable
space-holders or as actually physical coordinates. When there are too many zero values being filled into the training examples,
the network is discouraged from high-quality learning.

We have also considered to compare the performance of our model with other existing methods but several difficulties have
hindered us from measuring results of other models. First, we initially considered using the benchmarking tool at Stanford
Trajectory Forecasting Benchmark website with a set of quantitative metrics for performance evaluation [2]. However, a
website issue seems to prevent effective submission of our predictions. Secondly, we tried running the social LSTM [6] and
social GAN models [11] but they either output incorrect accuracy metrics or have unrevealed data preprocessing procedures.
A lot of other methods even do not provide open source code.

6 Conclusion and Future Work

In this work we have presented a novel data-driven approach for human trajectory prediction using CNN. The proposed model’s
capability to learn reasonable predictions given a trajectory history of multiple pedestrians was demonstrated. However,
whether our model truly captures pedestrian interactions still needs to be verified in comparison to other methods, which
should be all trained with much larger data. Also, further error analysis using raw image data would clarify the situations
where our model had difficulty to predict the trajectories. In the future, we are interested in conducting a formal comparative
study with other existing methods as well as extending the current approach to account for multimodality and scene-specific
contexts to further improve the prediction performance.
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