Learning to manage a system of bridges subject to
seismic hazard using deep-Q networks

Gitanjali Bhattacharjee
Department of Civil and Environmental Engineering
Stanford University
gjee@stanford.edu

Abstract

Optimizing the management of highway bridges subject to uncertain seismic hazard
remains an open problem in civil engineering. The problem can be cast as a Markov
decision process (MDP), with management actions comprising doing nothing,
retrofitting, or repairing bridges in the system. Model-based solution techniques
become intractable for larger numbers of bridges. We therefore investigate the
use of deep Q-learning — a model-free reinforcement learning (RL) technique —
to approximate the action-value function, Q(s, a), for a three-bridge system. We
develop an architecture for a deep Q-network (DQN) and apply it to one- and
ten-year planning horizons, with mixed results. While the DQN performs well
in the one-year episodes, further work is required to understand the RL agent’s
performance over the decade-long horizon.

1 Introduction

Optimizing the management of spatially distributed infrastructure systems subject to uncertain hazard
remains an open problem in civil engineering. Improving the management of highway bridges subject
to seismic hazard is one subset of this broader class of problems. Highway bridges at seismic risk are
of particular interest because their failure during earthquakes can lead to the disruption of transport
systems at a regional scale, leading to large indirect costs (i.e., costs beyond those of repairing the
bridges) [1]. In this project, we use a small subset (b = 3) of a larger test bed of bridges (B = 1743)
owned and managed by the California Department of Transportation (CalTrans). All bridges are
located in the San Francisco Bay Area, and therefore subject to substantial seismic hazard.

Like other structures, a highway bridge’s capacity to resist ground shaking can be described using a
fragility function. Fragility functions are typically created for classes of structures and calibrated for
individual structures. Fragility functions map from a measure of ground-shaking to the probability
that the structure has equaled or exceeded some level of damage. Damage states d are often described
as minor, moderate, extensive, or complete (collapsed), in ascending order of severity.

Fragility functions are typically modeled using lognormal cumulative distribution functions (CDFs),
which are parameterized by a median asset capacity, x4 , and logarithmic standard deviation, /. If
X denotes the measure of ground shaking and d; the damage state of interest, the probability that a
structure is in the damage state of interest or a more severe damage state is

P 4fx =) = o("D=E)

Thus, the larger p is, the greater the bridge’s resistance to ground-shaking.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Here we model the damage state of a bridge as binary. A designation of “damaged” indicates that
the bridge has at least extensive damage. A damaged bridge is non-functional. If undamaged, the
bridge has some capacity p. If damaged, the bridge has no capacity to resist ground-shaking. Here
we account only for damage due to earthquakes, i.e. we do not account for other sources of structural
deterioration.

The management of a highway bridge can be modeled with three actions: doing nothing, retrofitting,
or repairing. We can model the effect of each action on the capacity of the bridge to resist ground-
shaking by modifying y accordingly. Doing nothing has no effect on p, retrofitting increases p by a
multiplicative factor (here, by a factor of two), and repairing restores the bridge’s original capacity.

The management of a system of highway bridges can then be cast as a Markov decision process
(MDP), where b indicates the number of bridges of interest. The state, s, is described by a vector with
2b elements, since each bridge has a damage state d and a retrofit state r: [dg, 79, - .., dp, 7p]. (For
clarity, the aforementioned state will be referred to as the environment state.) The agent can choose
one of the three aforementioned actions at each bridge. Thus, the action is described by a vector of b
elements: [ao, ..., ap]. We use a simple rewards function,

b
1 1 if bridge ¢ is functional
=~) F;, where F; = O .
r49) b ; where {—1 if bridge ¢ is not functional

as a proxy for system performance. The reward has a range of
[—-1,1]. All actions are free - 1i.e., retrofits and repairs cost nothing.

7

While model-based techniques can be used to solve the
above MDP if b is small, they become intractable for larger
: i numbers of bridges as tabular representations become com-
0 ' putationally onerous. Therefore, we investigate the use
i of deep Q-learning to approximate the action-value func-
os{ /, tion, as detailed in Methods [2]. The input to the deep
— Q-network (DQN) is a state described by a vector with b

= elements, [f1, ..., up], each of which is the median resis-

Sl e tance to ground-shaking, u, of the associated bridge. (This

e & R will be referred to as the agent state.) The DQN outputs a

B o vector of 3% elements, each of which is the Q(s, a) value

associated with a particular action vector.

Fragility functions for 3 bridges

P(damage > extensive)

Figure 1: Retrofitting a structure shifts
its fragility function to the right. 2 Related work

Deep Q-learning has not, to the best of our knowledge, been applied to physical infrastructure
management. However, MDPs have been used as models for infrastructure management in various
contexts, most notably in the management of individual bridges [3]. More recently, partially-
observable MDPs (POMDPs) have been used to model the management of the components of a single
bridge subject to deterioration and under uncertainty [4,5,6].

Many papers in the literature address the distinct but related challenge of optimizing the management
of a system of component structures whose performances are additive. For example, minimizing the
operations and maintenance costs of a wind farm comprising multiple turbines can be reframed as
minimizing the O&M costs of each turbine [7].

However, the relationship between the state of a single bridge in the highway network and the
performance of the whole network, as measured by various traffic metrics, is not known analytically.
The relationship between the state of the whole bridge network and the traffic network performance
requires simulation of multiple systems [1]. Furthermore, assumptions of independent behavior
cannot reasonably be made for a portfolio of structures subject to seismic hazard [8].

3 Dataset and Features

In addition to the fragility function parameters of each bridge, datasets required to build the envi-
ronment simulator included the ground motions associated with each earthquake in the Uniform

DDQN Verification: CartPole DDQN Verification: MountainCar

episodic reward
0 — moving average
solution threshold

episodic reward
—— moving average
solution threshold

-100

Reward

50 -150

-200

[50 100 150 200 250 300 4 200 400 600 800 1000
Episode Episode

Figure 2: Performance of DDQN agents playing CartPole (left) and MountainCar (right).

California Earthquake Rupture Forecast, Version 2 (UCERF2) and the annual frequency of each of
the ruptures in UCERF2. These datasets can be obtained as part of Miller’s traffic model [9].

4 Methods

Deep Q-learning is an off-policy model-free reinforcement learning (RL) method that uses a deep
Q-network (DQN) to approximate the action-value function, Q(s, a), of an MDP [2]. The deep
Q-network takes as input a state vector and produces as output a vector in which each element is an
estimate of the Q-value of taking a particular action from the input state [2]. The parameters of the
DQN, 6, are updated via gradient descent on the loss, computed for a single sample as:

085 = {y— Ols,a:0))2, whetey = {r(s, a) ?fs is termlnall
r(s,a) + v+ max, Q(s',a’;6) if s is not terminal

However, learning solely online from consecutive samples, has three principal drawbacks: (1) it is
data-inefficient, as each sample is used only once (2) it is inefficient due to the strong correlations
between the samples (3) it increases the risk of parameters getting stuck in poor local minima, or
even diverging [2]. Instead of this standard online Q-learning approach, Mnih et al suggest that
the agent should also accelerate learning through experience replay [2]. To do so, the agent stores
observations of the state, action, reward, and next state — or (s, a, r, s’) tuples — in memory. Then, the
agent randomly selects a minibatch of observations from memory, computes the loss on each sample
in the minibatch, and updates the parameters of the DQN via minibatch gradient descent on the loss

[2].

Deep Q-learning uses the same DQN to select and evaluate actions, which can result in overestimation
of Q-values [10]. Those overestimations may lead to "overoptimism" and suboptimal policies [10].
Van Hasselt et al proposed double deep Q-learning, a refinement in which the max, operation is
decomposed into action selection and action evaluation [10]. In brief, two distinct DQNs with the
same architecture are instantiated: a main DQN and a target DQN. During experience replay, the
main DQN is used to select the action that will maximize the Q-value of the next state while the target
DQN is used to estimate what that Q-value is. Gradient descent is used to update the parameters of
only the main DQN. At some update interval (a hyperparameter specified by the user), the weights of
the main DQN are copied to the target DQN. Double deep Q-learning has been shown to significantly
improve the performance of an agent and was tested in this problem setting as well, with good results
[10].

S Experiments, Results, and Discussion

Validation of the DDQN implementation was performed by solving, as shown in Figure 2, two classic
OpenAl Gym environments: CartPole-v0 and MountainCar-v0. The solution criterion for CartPole
is to achieve an average score of at least 195.0 over 100 consecutive episodes [11]. The DDQN
agent solved CartPole in 176 episodes using an NN with two hidden layers (HLs) of 8 and 4 nodes,
a learning rate of 0.001, and a batch size of 32 for experience replay. The solution criterion for

MountainCar is to achieve an average score of at least -110.0 over 100 consecutive episodes [12].
The DDQN agent solved MountainCar in 556 episodes using an NN with three HLs of 256, 128,
and 64 nodes, a learning rate of 0.0001, and a batch size of 64 for experience replay. When playing
MountainCar, the DDQN agent was allowed to observe (and store) 1000 episodes before starting to
train. All hidden units used ReLU activation functions with He uniform variance scaling initialization,
while the units in the output layer used a linear activation function.

For this project, b = 3 for computational tractability, and the size of the action space |A| = 27. As
this is a non-standard deep Q-learning problem, identifying a suitable NN architecture — i.e., one
that allowed the accurate prediction of Q-values proved a necessary first step. To identify such an
architecture, we compared the ability of various NNs to predict the returns of one-step episodes. In
an episode with multiple time-steps,

Q(s,a) = r(s,a) + yargmax, Q(s’, a’)

However, in an episode with just one time-step, this equation reduces to

Q(s,a) = (s, a)
which makes evaluation of an NN’s predictive power straightforward and relatively efficient.

The NNs’ predictive power was evaluated every 100 training episodes by measuring the loss (mean-
squared error) recorded on a batch of 64 one-step episodes randomly selected from memory. Multiple
NNs were tested, with two to five HLs, each with five to 500 hidden units. All HLs had ReLLU
activation functions with He uniform variance scaling initialization, while the output layer used a
linear activation function. All NNs used the Adam optimization algorithm, and their losses were
measured as a mean-squared error. All NNs had minibatch sizes of 64. The choice of hyperparameters
— in particular, learning rate and minibatch size — was predicated on a combination of two factors:
first, observing that a learning rate of 0.0001 and a minibatch size of 64 resulted in both relatively
speedy and good performance on the MountainCar task and second, brief trial and error with learning
rates of 0.001 and 0.00001 proving less successful.

The best-performing NN had two hidden layers, each with 300 hidden units, and a learning rate of
0.0001. As expected, the DDQN agent outperformed the DQN agent, with a minimum loss of 1.1
after 80000 episodes, compared to 2.7 for the DQN agent. For the DDQN agent, the target network
was updated every 20 steps, a hyperparameter choice based on trial and error. The magnitude of
the performance difference between the two agents indicates that using DDQN would be useful for
longer episodes, as expected per [10].

One key change that made predicting the one-
step episode returns possible was changing the
DQN input from the environment state to the
— i agent state. The rationale for this change was
oon that a structural engineer could reason that a set
of bridges with larger fragility function param-
eters will probably perform better in an earth-
quake than a set of bridges with smaller fragility
function parameters, and thus lead to larger re-
wards. However, even a structural engineer
would find it more difficult to see this relation-
ship if presented with environment state repre-
sentations, which are tuples of binary variables.
——— T Thus, we could reason that an NN might more
o 10000 20000 30000 40000 50000 60000 70000 80000 . . . oy
training episodes easily learn the relationship between fragility
function parameters and overall performance
from the agent state.

One-step episode results with 3 bridges

8

3
o
—

loss (mean-squared error)
w 2 v o N
& &8 &8 & o

N
1)

,_.
o

o

Figure 3: Loss over time of one-step return predic-
tions;inset shows discrepancy between DQN and Having identified an NN architecture capable
DDQN results during last half of training. of learning a Q(s,a) function for one-step

episodes, we then used the same architecture
for a DDQN agent and extended the length of the episodes to 10 timesteps (10 years). This longer
horizon reflects the length of real planning horizons in infrastructure management, which may extend
further to 30 or even 50 years. The choice of hyperparameters was based on those that worked well

for the one-step episodes: a learning rate of 0.0001, a target network update interval of 20 steps, and
a minibatch size of 64.

The undiscounted return for a ten-year episode ranges from —10 to 10. The agent was evaluated
every 100 training episodes; its average undiscounted episodic return over 10 decade-long evaluation
episodes (with random starting states) is plotted in Figure 4. The maximum average undiscounted
return was 6.4 after 150000 training episodes. However, this maximum was not consistently achieved.
The DDQN agent does learn to repair and retrofit bridges, improving its average episodic return with
training. However, the improvement is slight and the moving average over the average undiscounted
return does not reach or exceed 0.0. As repairs and retrofits are free, the agent was expected to achieve
the near-optimal return during evaluation, but did not. This is a somewhat disappointing result, as
this problem can be solved in a straightforward manner using simple model-based techniques, like
value iteration.

This result may also be due in part to the uncommon fragility of bridge 3, as shown in Figure 1. The
agent does not learn to retrofit this bridge, likely because there is little chance of benefit from said
retrofit — that is, the bridge is so vulnerable to ground shaking to begin with that retrofitting per the
scheme described previously has little effect on the chance it will become damaged in an earthquake.
However, the agent should learn that there is some benefit, however small, of retrofitting this bridge
since the probability of damage does decrease, however slightly.

The agent’s failure to learn may be due more to a lack of training time than other problems. The agent
trained for a maximum of 150000 episodes in an action space of size 27. In sharp contrast, Mnih et al.
trained their agent for 10 million episodes, though it acted in much smaller action spaces (of size 4 to
18) [2]. This strongly suggests that training was too short. In addition, increasing the NN depth from
two to five HLs did not improve results over 50000 training episodes (figure not shown). Though
these pieces of evidence are not conclusive, taken together they suggest that increasing training time
may be of more concern than potential under-fitting.

6 Conclusion/Future Work

Useful findings from this work include:(1) a con-
tinuous representation of the state of the bridges
in the system proves a better input for the DQN
than a vector of binary variables (2) a shallow
and relatively large DQN seems able to approx-
imate the Q-values of a small system of bridges
well.

b6 Evaluations of episodic return for 10-year episodes

evaluation
75 moving average (w=50), evaluation

5.0

2.5
Immediate future work should include a longer
training time for the DDQN agent. It should
also include removing repairs from the action
space; the agency is unlikely to let a damaged
bridge remain damaged for a year, as is cur-
rently possible in the simulator. Repairs could
instead be treated as an automatic feature of the
environment and carry a weighty penalty. This
reconfiguration would also address another chal-
lenge of continuing this work: namely, reducing Figure 4: The performance of a DDQN agent on
the state- and/or action-spaces. Without repairs, 10-year episodes was evaluated every 100 training
the size of the action space would decrease from episodes and shows some improvement over time.
|A] = 3%to |A| = 2°.

Future work must also focus on ways to make

the management of systems with more compo-

nents computationally tractable. For sufficiently large b —i.e., greater than 10 — the simple rewards
function used here can be replaced by the output of a traffic simulator developed for this very test
bed by M. Miller [1]. This will result in a truer measure of system performance, with useful output
metrics including the total travel time for all trips made on the network. Other opportunities for future
work include increasing episode lengths (e.g., to 30 years), and incorporating prioritized experience
replay to increase learning efficiency.

0.01

=25

=7.54

average (undiscounted) episodic return over 10 episodes

-10.0

0 20000 40000 60000 80000 100000 120000 140000
training episodes

Contributions

This project is the work of the sole author. She appreciates the guidance of Jay Whang, the project
TA.

Code

Code associated with this project is available in a private GitHub repository at https://github.
com/gbhattacharjee/cs230_dgn. CS230-stanford has been invited as a collaborator.

References

[1] Miller, M. Seismic risk assessment of complex transportation networks. (2014) Ph.D. dissertation. Dept. of
Civil and Environmental Engineering, Stanford University.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., & Riedmiller, M. (2013).
Playing Atari with Deep Reinforcement Learning. NIPS Deep Learning Workshop.arxiv:1312.5602.

[3] Frangopol, D.M., Kallen Maarten-Jan, & van Noortwijk J.M. (2004) Probabilistic Models for Life-Cycle
Performance of Deteriorating Structures: Review and Future Directions. Progress in Structural Engineering and
Materials, 6(4):197-212.

[4] Papakonstantinou, K.G. & Shinozuka, M. (2014) Planning structural inspection and maintenance policies
via dynamic programming and Markov processes. Part I: Theory. Reliability Engineering and System Safety,
130: 202-213.

[5] Papakonstantinou, K.G. & Shinozuka, M. (2014) Planning structural inspection and maintenance policies
via dynamic programming and Markov processes. Part II: POMDP implementation. Reliability Engineering and
System Safety, 130: 214-224.

[6] Fereshtehnejad, E. & Shafieezadeh, A. (2017) A Randomized Point-Based Value Iteration POMDP Enhanced
with a Counting Process Technique for Optimal Management of Multi-State Multi-Element Systems. Structural
Safety, 65:113-125.

[7] Memarzadeh, M., Pozzi, M., & Kolter, J.Z. (2014) Optimal Planning and Learning in Uncertain Environments
for the Management of Wind Farms. Journal of Computing in Civil Engineering, 29(5):04014076-1-04014076-
10.

[8] Jayaram, N. & Baker, J.W. (2009). Correlation model for spatially distributed ground-motion intensities.
Earthquake Engineering and Structural Dynamics, 38:1687-1708.

[9] Miller, M. (2014). Quick traffic model. [Source code] https://purl.stanford.edu/hx023kk0983

[10] van Hasselt, H., Guez, A., & Silver, D. (2015) Deep reinforcement learning with double Q-learning. arXiv
preprint. arXiv:1509.06461.

[11] The CartPole-v0 Environment. OpenAl Gym, gym.openai.com/envs/CartPole-v0/.

[12] The MountainCar-vO Environment. OpenAl Gym, https://gym.openai.com/envs/
MountainCar-vO0/.

Other codes and libraries used
[13] Keras. Chollet, Frangois and others. 2015. https://keras.io
[14] Oliphant, T.E. (2006) A guide to NumPy, USA: Trelgol Publishing.

[15] Hunter, J.D. (2007) Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering,
9:90-95.

