Question Answering on the SQuAD Dataset

TG Sido
Department of Computer Science
Stanford University
osido @stanford.edu

Abstract

Question Answering (QA) is an increasingly important NLP problem with the proliferation
of chatbots and virtual assistants. When a system has prior background knowledge, it can
be queried with a question, which the system attempts to understand and answer using
machine comprehension. This paper focuses on answering questions from the Stanford
Question Answering Dataset (SQuAD) dataset which is comprised of paragraphs,
questions, and their corresponding answers from Wikipedia. In order to achieve state-of-
the-art results, past papers[2] have relied on a series of complex attention mechanisms,
word vector embeddings, and novel deep learning optimizations. This paper focuses on the
implementations of Bi-Directional Attention Flow (BiDAF), Dynamic Coattention
Network (DCN), and smart span selection. Our ensemble of BIDAF and DCN achieves an
F1 score of 58.7 and an EM score of 44.4 on the dev set.

Introduction

Question Answering (QA) systems have gained in popularity recently with chatbots and virtual
assistants, including Alexa and Siri. Moreover, QA has democratized access to many facets of
technology based on its ease of use. In this paper, we build a QA system for the Stanford Question
Answering Dataset (SQuAD) dataset, which consists of thousands of adversarial questions that were
crowdsourced from Wikipedia articles. Human Performance on SQuAD peaks at an EM score of
86.8 and an F1 score of 89.5 while PINGAN Gamma Lab’s state-of-the-art system achieves an EM
score of 83.4 and an F1 score of 85.9. Therefore, working on QA systems for SQuAD is worthwhile,
as we still have progress to make. We take paragraphs and questions from those paragraphs as input
and our system will output answers to those questions.

Related Work

Machine Comprehension (MC) involves understanding a context paragraph, so that questions from
the paragraph can be answered. Pranav Rajpurkar and his team released a paper on SQuAD, which
we refer to in order to better understand the structure of the dataset, the baseline of human
performance, and its use of logistic regression, which achieved an EM of 51.0 and F1 of 51.0 [1].
Previously, early summarization - where the attention layer lacks a complete and fluent summary of
the context in relation to the question plagued many older QA systems that relied solely only on
Context-to-Question (C2Q) attention. In 2016, Minjoon Seo and his colleagues introduced Bi-
Directional Attention (BiDAF) which combined attention flow from Context-to-Question (C2Q)
as well as Question-to-Context (Q2C) with excellent results: EM of 67.7 and F1 of 77.3 [2]. In
addition to this attention layer, they also use both a character and word embedding layer (we only
use a word embedding layer) and a modeling layer. In our own paper, we implement BiDAF's
attention layer as part of our strategy. Caiming Xiong's work on Dynamic Coattention Networks
(DCN) also works to improve the attention layer by adding additional trainable states to both the
context and the question, which over training time, help to correct from local maxima that
correspond to incorrect layers [3]. DCN performs very well with EM of 65.4 and F1 of 75.6. Note
that DCN also uses a dynamic pointing decoder to estimate the start and end indices of the span and
a biLSTM as the initial encoder. Our model implements the DCN attention layer as part of our
ensemble and uses a biGRU for our initial encodings. Danqi Chen's work on smart span prediction

also inspired our own version of smart span prediction [4]. They select a span for the answer based
where the start and end indices are at most 15 characters apart and where the joint probability of the
deduced start and end indices being correct is maximized. They achieve an impressive EM of 69.5
and F1 of 78.8 with an array of other architectural features, including a 3-layer biLSTM for initial
encoding. Our implementation uses a bitmask to enforce the distance between the start and end
indices. Finally, Bhuwan Dhingra's work on using biGRUs as the intermediate steps of an attention
layer provided useful insight into possible future work for our model [5].

3. Dataset
SQuAD comprises of comprises 107,785 examples from 23,215 paragraphs which come from 536
articles that follow this format:
P: The of 1996 recognizes two categories of schools:
“public” (state-controlled) and “independent”...
Q: What South African law recognized two types of schools?
A:
Q: In what year was the South African Schools Act passed?
A: 1996
Q: Along with public schools, what type of school was recognized under the
South African Schools Act?
A: independent
Legend: P (paragraph); Q (question); A (answer)

The train set has 87,599 examples and dev set has 10,570 examples, following a 90-10 split while
test set is not revealed to the public. Data exploration reveals the following:

Context Length Question Length
12000 20000
10000 e
30000
8000
g g 2000
2 2
.]
g @00 & 000
3 &
600 15000
10000
200 00
0 0
0 100 0 00 a0 00 @0 0 5 ¥ 5 » 5 DD I @
Number of words Number of words
Answer Length Answer Location
2000
100000
17500
0000 15000
z 2 12500
§ 60000 g
& & 10000
g g
x x
0000 7500
5000
20000
200
0 0
0 0 -] » o 0 0 L]] @ 100

Number of words. Location in Context (%)

When examining the context length histogram, we see that most contexts are less than 300 words in
length. Our initial model accommodated all context lengths up to 600 with padding, but this
discovery led us to reduce our max context length to 300, which discards 112 paragraphs and
associated questions but tremendously reduces computational cost, making it easier to train and
evaluate our model. Next, when examining the location of where answers are in the original context,
where 0% is the beginning of the context and 100% is the end of the context, we see that many
answers lie in the beginning of the context with exponential drop-off behavior as we move to the
end of the context. However, there is still substantial representation for every answer location within
the context. Lastly, when viewing the answer length figure, we see that answers rarely are longer
than 15 words. This informs our decision for smart span selection to enforce:
startIndex < endIndex < startlndex + 15

4. Methods
4.1 General Architecture

| Paragraph | | Question |

1

Paragraph Question
Embedding Embedding
(Glove) (Glove)
| [
-
Context Question
(Hidden) (Hidden)

T
Attention Layer

| |

| Start Logits | | End Logits |
| |

| Start Index l | End Index |

Answer

We build upon the baseline architecture shdwn above from CS224N][6] to build a more complex
attention layer with BIDAF and DCN as well as smart span selection further downstream to
determine the start and end indices.

4.2 Complex Attention Mechanisms

Given N different context hidden states (C) and M different question hidden states (Q), our
baseline uses basic dot-product attention from context to question (C2Q). However, we can
achieve better results when we allow attention to flow from question to context (Q2C) as well.
Note for future reference that c;refers to the ith context vector and g;refers to the jth question
vector. Our goal is to create a query-aware version of C, our matrix of context vectors.

4.2.1 Bi-Directional Attention Flow (BiDAF)[3]

BiDAF creates an NxM similarity matrix where S; has is a scalar score based on c; and g;. Note that
this similarity matrix S, is in part created with a weight vector, wgm, which is updated over time
through backpropagation. To perform C2Q attention, we get a by taking a row-wise softmax of S
to help form our a, which is a weighted sum of our question states, g; . Then, for Q2C attention, we
define m, where m; is the max of the corresponding row in S, providing an attention distribution
over context locations that highlights the most important parts of the context for the question. We
then get 3 by taking the softmax of m to find the probability of each specific context location. This
is then used to compute our Q2C output, ¢’, which is a weighted sum of our context states and f.
Finally, we get our final attention output, which combines both our C2Q and Q2C outputs by
stacking c, a, element-wise multiplication of ¢ and a, and element-wise multiplication of ¢ and ¢

4.2.2 Dynamic Coattention Network (DCN)[4]

DCN, like BiDAF, uses both C2Q and Q2C. However, it differs from BiDAF in that it uses second-
level attention to attend to the attention outputs as well. To achieve this, we first we use a trainable
weight matrix, W,,.q and vector, buoq to derive modified question states: q’j = tanh (Wyoa Qj + bmoa),
which over training time, should select and weight different parts of the question states differently
to aid in computing attention downstream. Then, we add trainable sentinel vectors to both our
context and question matrices and compute an (N+1) x (M+1) affinity matrix L where L = Ci ot q’;-
Note that the additional sentinel vectors are added to attend to none of the question and context
states, which allows the sentinel vectors to build up a knowledge base over time to increase the
performance of the attention computations downstream. To perform C2Q attention, we get a by
taking a row-wise softmax of L to help form our a which is a weighted sum of our question states,
g;. Then, for Q2C attention, we get B by taking the column-wise softmax of L and use that to calculate
our Q2C output, b, which is a weighted sum of our context states and . Then we get our second-
level attention, s, as a weighted sum of b and a. Finally, we stack s and a and feed it as input to a
biLSTM -- as part of coattention encoding -- and return its output as our final attention output.

3

4.2.3 BiDAF + DCN Ensemble

In general, ensembling pools multiple approaches together for a single stronger approach. We do
this here by stacking the attention outputs from both BiDAF and DCN as our final attention
output.

4.3 Smart Span Selection

When choosing the start and end indices, our architecture uses the same logits distribution and
selects the index with the highest probability independently. Independent selection can cause
problems if the end index is before the start index, which is impossible. Additionally, since we
discovered from data exploration that answers are typically no more than 15 words, we want to
enforce: startIndex < endIndex < startIndex + 15. To achieve this, we use a bitmask of 1s where
valid logits exist and Os where they do not and perform element-wise multiplication of this
bitmask and the logits distribution to enforce our rule. Since it uses argmax to find the index,
zeroing out certain logits greatly lessens the probability of being chosen.

5. Experiments/Results/Discussion
5.1 Results

Baseline (dropout = .15, context_len = 600)

Baseline (dropout = .15, context_len = 600, smart span 62.3 51.2 39.5 28.6
selection)

BiDAF (dropout = .15, context_len = 600) 54.4 42.6 44.1 322
BiDAF (dropout = .20, context_len = 300) 66.3 54.6 45.2 33.1
DCN (dropout = .15, context_len = 600) 72.9 58.6 57.9 435
DCN (dropout = .20, context_len = 300) 7255 58.8 58.1 433
BiDAF + DCN Ensemble (dropout = .20, context_len = 73.3 60.1 583 43.2
300)

PAML + BERT (Ensemble) (state-of-the-art) n/a n/a 85.9 83.4

5.2 Hyperparameter Choices

Data exploration and iteration informed our hyperparameter choices. With regards to learning_rate,
we chose .001, which is slow but mitigates against divergence when finding the global minimum
for the cost. For QA, this is ideal since this task there is a lot of granularity needed in the weight
matrices to find the correct start and end indices. For batch_size, we initially chose 100 but switched
to 32 due to memory and speed constraints on our dev machine. Generally, larger batches are better
for lowering variance in cost estimates. Since most paragraphs (contexts) are less than 300 words in
length, using 300 instead of 600 for the context_len hyperparameter provides tremendous speed
improvements in training and testing. For dropout, we increased from .15 to .20 to increase
regularization. As shown above in our results, regularization — due to increasing dropout probability
or early stopping — generally provides a small but noticeable boost in performance. For
embedding_size, which refers to the size of the GloVe word embeddings, we settle on 100 instead
of 200 or 300. While word embedding vectors with larger sizes can encode more meaning, past
papers have not seen huge performance increases from larger embeddings.

5.3 DCN vs BiDAF

DCN performs better than BiDAF due to the following: trainable sentinel states that are added to
both the context and question that can utilize the growing knowledge base. Also, the additional
biLSTM encodes more query-aware information into the attention layer by using for the first and
second level attention layers.

5.4 Smart Span Selection

In order to test smart span selection in isolation, we ran it with the baseline architecture to compare
to our initial baseline. We see a minimal increase in dev F1 but a decrease in dev EM. More
investigation will need to be done here to improve this feature.

5.5 Error Analysis on our Ensemble
Here, we will cover a few key examples where our ensemble model failed:

Note that green text is true answer, [kl IERgSagoNG| is predicted start, _ is

predicted end, underscores are unknown tokens.

Example A:

the American broadcasting company (abc) (stylized in its logo as abc since 1957) is an american commercial broadcast

television network that is owned by the _disney—abc_ television group , a subsidiary of disney media networks division of

the walt disney company . the network is part of the big three television networks . the network is headquartered on
ﬁ and west 66th street in manhattan , with additional major offices and production facilities in new york

city , los angeles and burbank , california .

QUESTION: on what streets is the abc headquarters located

TRUE ANSWER: columbus avenue and west 66th street; PREDICTED ANSWER: columbus avenue

F1 SCORE ANSWER: 0.500; EM SCORE: False

Analysis: Our system does find the correct start index and finds an incorrect end index that is still
within bounds of the true answer. This is likely an early summarization issue, as mentioned
previously, we need to investigate our ensemble’s attention layers and possibly investigate a
dynamic pointer feature to mitigate against this.

Example B:

most _platyctenida_ have oval bodies that are flattened in the _oral-aboral_ direction , with a pair of _tentilla-bearing_
tentacles on the aboral surface . they cling to and creep on surfaces by _everting_ the pharynx and using it as I muscular "
- " . all but one of the known _platyctenid_ species lack _comb-rows_ . _platyctenids_ are usually cryptically colored ,
live on rocks , algae , or the body surfaces of other invertebrates , and are often revealed by their long tentacles with many
sidebranches, seen streaming off the back of the _ctenophore_ into the current .

QUESTION: what do platyctenida use their pharynx for ?

TRUE ANSWER: cling to and creep on surfaces; PREDICTED ANSWER: a muscular " foot

F1 SCORE ANSWER: 0.000; EM SCORE: False

Analysis: Our system fails completely with this paragraph and question, and it is likely due to the
prevalence of unknown tokens (shown with underscores). Since Wikipedia has obscure words
(scientific terms in this case) that are not in the GloVe vocabulary, our model has a hard time
creating a useful attention layer. Using a character-level CNN to augment the initial word
embeddings would help here.

6. Conclusion/Future Work

As mentioned in the introduction, human performance on SQuAD peaks at an EM score of 86.8 and
an F1 score of 89.5 and state-of-the-art systems still have much ground to cover to reach that level
of performance. From our investigation of the BiDAF and DCN systems, we see that a strategic
attention strategy is vital for all high-performing models. Additionally, we see that there is a lot of
room for creativity in approaching this task. Future work could include implementing smart span
selection with an LSTM to condition probability of end index on the start index; using a character-
level CNN to augment the GloVe word embeddings, mitigating against out-of-vocabulary words;
experimenting with averaging, adding, or max-pooling the forward and hidden states from the RNN
Encoder.

7. Contributions

TG Sido worked solo on this project. He implemented BiDAF and DCN, and smart span selection
by following the equations set forth in their respective papers and implementing them in TensorFlow
in this repository. He also wrote the visualization code in a jupyter notebook.

References
[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

[4] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051, 2017.

[5] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov.
Gated-attention readers for text comprehension. arXiv preprint arXiv:1606.01549, 2016.

[6] CS224N. https://web.stanford.edu/class/cs224n/default project/default project v2.pdf

Acknowledgements

We would like to thank Pedro Garzon and Steven Chen for helpful advice and insights regarding
this project.

