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Abstract - Knee osteoarthritis is a painful and
debilitating disease that is accelerated by excessive
loading in the joint. The knee adduction moment
(KAM) is a surrogate measure of knee loading,
however, measurement of KAM requires expensive
motion capture equipment, forceplates, and trained
engineers. Gait modifications that reduce the KAM
can improve joint pain, but they require
personalized prescription in the motion capture lab.
Video-based extraction of 2D anatomical landmarks
could be a scalable tool for estimating the effects of
different gait modifications. In this study, 3D
motion capture marker positions during walking
with a variety of gait modifications were used to
predict peak KAM per step. This data was
collected for 98 people, giving a total of 125,415
steps. A fully connected neural network was able to
predict the peak KAM on the test set of 8 subjects,
on which the model did not train, with r*> 0.80. We
have demonstrated the prediction of KAM from
joint positions which can be extracted from 2D
video analysis. This model will likely enable the
personalization of gait modifications in any clinic
with access to a 2D video camera.

I. INTRODUCTION

Knee osteoarthritis is a leading cause of years
lost to disability worldwide (CDC, 2009). The medial
compartment is affected 10 times more often than the
lateral compartment (Ahlback, 1968), likely caused by
the large medial-to-lateral loading ratio during gait
(Schipplein and Andriacchi, 1991). The knee adduction
moment (KAM) is commonly used as a surrogate
measure of medial knee loading (Figure 1, Zhao et al.,
2007), and is related to the presence (Hurwitz et al.,
2002), severity (Sharma et al., 1998), and progression
(Miyazaki et al., 2002) of medial compartment knee
osteoarthritis.
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Gait retraining that teaches people to change
their walking kinematics such as increasing trunk
sway, medial knee thrust, and changing the foot
progression angle have been shown to reduce the KAM
and reduce joint pain (Fregly et al., 2007; Guo et al.,
2007; Miindermann et al., 2008; Richards et al., 2017;
Shull et al., 2013a). In order to be effective, gait
retraining must be personalized by assessing the effects
of each modification on joint loading (Favre et al.,
2016; Shull et al., 2015; Uhlrich, 2018). Joint loading
is traditionally computed with Newtonian dynamics
from force and acceleration data measured in an
expensive motion capture lab. This requires force
plates, motion capture cameras, and knowledge of how
to use this technology. In order for this therapy to
scale, a simpler personalization method is needed.

With recent improvements of pose estimation
algorithms that use 2D video (Cao et al., 2016), the aim
of our project is to predict joint loads using the
positions of anatomical landmarks alone. More
specifically, our goal is to predict the first peak KAM
using time series 3D trajectories of anatomical
landmarks measured from motion capture data without
using force plate data or Newtonian mechanics.
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Figure 1: Left: Current means of calculating KAM requires
motion capture and walking over force plates. Center: Joint
position identification using OpenPose (Chiu, 2018). Right:
Gait modifications such as changing the foot angle reduce
the knee adduction moment peaks.



II. DATASET

We have motion capture data from 98
individuals (78 osteoarthritic, 20 healthy) walking at a
self-selected speed with a variety of different gait
modifications which alter the KAM (Figure 1). Using
ground reaction forces from the force-instrumented
treadmill and anatomic marker locations from optical
motion capture, we compute the ground truth first peak
of the KAM using Newtonian dynamics and normalize
it to percent bodyweight x height (%BW%*ht).

The input to our model is the 3D position,
velocity, and acceleration timeseries (8 points) of 13
anatomical landmarks per step. Markers placed on the
neck and bilaterally on the rear pelvis, front pelvis,
lateral knee, lateral ankle, heel, were reported relative
to the center of the rear pelvis and normalized by
height. Since we are predicting the first KAM peak
which, by definition, occurs during the first half of the
stance phase, we only use input marker data from the
first half of the stance phase. This clipped dataset
originally comprised of 15 timesteps, but due to the
frequency content of the timeseries input, we
downsampled by a factor of 2 to end with 8 timesteps.
We finally add a binary indication of which leg is
taking the step to account for potential systematic bias
of errors in the right and left forceplates. The input
shape is (118 features x 8 timesteps x 125,415 steps.
For the bilateral markers, the positions of the leg on the
ground appear in the same position of the input matrix,
regardless of the leg taking the step. The output is peak
KAM 1x125,415. We split the data by subject with 80
subjects in the test set, 10 subjects in the dev set, and 8
subjects in the test set. The data was split by person so
the model will not have seen the people in the test set
during training. We also added held out 3,000 steps
from the training set to the train-dev set to test how
well the model performs predicting KAM for people it
has trained on, but steps it has not.

III. METHODS
Model Architecture

We tested three different neural network (NN)
architectures: a 1D Convolutional Neural Network
(CNN), a bidirectional long short-term memory
(LSTM) recurrent neural network, and a fully
connected (FC) NN. All weights were initialized with
Xavier initialization (Glorot et al., 2010) and ended
with a single fully connected neuron with linear
activation. Adam gradient descent (Kingma et al.,

2014) was used to minimize our mean-squared-error
loss function (Equation 1). Root mean square error and
correlation coefficient (r>) were used to assess model

performance.
m
L= ) -9
i=1

Our CNN, motivated by Wang et al. (2017),
included 4 convolutional layers with 20, 40, 60, and 80
channels, respectively. The full timeseries (30
timepoints) was used for this model. The 1D kernel
was 5 timesteps wide, 118 features tall, and moved in
the time dimension. Relu activation functions were
used and batch normalization was performed between
convolutional layers. Three fully connected layers
followed with 15 neurons (Relu activation), 70 neurons
(Relu activation), and 1 neuron (linear activation).

The LSTM model, motivated by Kidzinski
(2018), comprised of two bidirectional LSTM layers
with 32 units with tanh activation. A single FC neuron
followed with linear activation. The 8-timestep input
was used for the LSTM model.

Our FC model after hyperparameter tuning
(Figure 2) has 800 neurons in the first hidden layer
with Relu activation followed by an output neuron with
linear activation. Dropout with probability of 1%
chance of zeroing is performed between layers.

Equation 1
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Figure 2: Diagram of best model (2-layer fully connected
neural network)

Following a course hyperparameter search for
all three models, we selected the model with the lowest
MSE on the development set. The FC network
performed best (Table 1), so a more systematic
hyperparameter search was performed on this model.



Hyperparameter Search

Our initial FC model displayed low bias, but
high variance, so the hyperparameter tuning was
targeted at reducing variance. We tuned the model
complexity (number of neurons per layer and number
of hidden layers), probability of dropout, Lo
regularization. L, regularization did not improve model
performance.

We randomly sampled parameters related to
model complexity and dropout probability. After
sampling over a broader range of parameters, the
results of a more focussed search are displayed in
Figure 3. This search led us to a network with only 1
hidden layer, a large number of neurons in the first
layer, and a small probability of dropout (0.01).
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Figure 3: Results of the focussed hyperparameter search to
determine model size and dropout hyperparameters. A small
number of hidden layers with a large number of neurons in
the first layer and a small dropout probability minimized

RMSE on the development set.

Dataset Variation Experiments

To better understand the important input
features, we varied the dataset inputs in two ways and
computed a saliency map. We first removed marker
accelerations, velocities, and both from the dataset to
the performance of a limited dataset. Next, since the
ultimate application of our network would input 2D
joint position projections, we simulated side-view and
front-view camera position by removing the third,
depth dimension from our 3D motion capture data. For

example, for a simulated front-view camera, we
removed the front-back dimension and retained the
side-side and up-down positions. Finally, we computed
a saliency map (Kotikalapudi, 2017) for the position-
only data normalized to have unit variance.

IV. RESULTS

The performance of the CNN, LSTM, and FC
architectures are shown in Table 1. The FC model
performed the best, with a test r> value and RMSE of
0.80 and 0.57 %BW¥*ht, respectively. This model
performed equally well on the training set and train-
dev sets (r’=0.97, Figure 4). The model performs worse
on the development and test sets (r’=0.88 and r%0.80).
Despite the reduced overall performance on the test set,
for many subjects (color coded), the slope of their true
vs. predicted line is close to one. This indicates that
despite a systematic offset from the true value, our
model can accurately predict changes in peak KAM
which is important for our application.

Table 1: The performance of different models.

Model |Details Trainr?> |Devr? |Testr? RMSE
CNN 3 ConvlD layers, 3 FC 0.94 061 lo0s9 0.81
layers, 40 epochs
LSTM |2 LSTM layers, 1 FC 0.84 054 1056 0.81
layer, 40 epochs
FC 2 FC layers, 40 epochs
(positions, velocities, [0.97 0.88 0.80 0.57
accelerations)
Front-view only
(positions, velocities, 0.95 0.87 0.78 0.60
accelerations)
Side-view only
(positions, velocities, 0.92 0.56 0.44 0.97
accelerations)
Positions only 0.95 0.83 |0.76 0.63
Positions, velocities 0.96 0.88 081 056
only
Positions, accelerations 0.96 0.86 0.77 0.62
only

When only using the marker positions,
performance only degraded slightly (test r’=0.76)
compared to the model that used positions, velocities,
and accelerations (r?=0.80, Table 1). Using only the
positions and velocities or positions and accelerations
yielded slight improvements compared to positions
alone (r’=0.81 and r’=0.77, respectively). The front-
view only model performed similarly (test r’=0.78) to
the full-feature model, but the side-view only model
performed poorly (test r’=0.44).
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Figure 4: Predicted KAM vs. True KAM for all portions of
the dataset and the y=x line.

The saliency map of the marker positions
shows that changes in knee, heel, and neck side-side
and pelvis up-down positions cause large changes in
peak KAM (Figure 5). In general, Side-side and up-
down positions are more important in the saliency map
than front-back positions which corresponds with the
findings of the front and side-view only models.

V. DISCUSSION AND FUTURE WORK

A 2-layer FC network with position, velocity, and
acceleration inputs predicted the training set peak
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KAM with high accuracy (r?=0.97) indicating that a
relatively shallow NN is sufficient to solve this
structured problem. The model performed with
equivalent accuracy on the train-dev set indicating that
if the model trained on steps from a person, it will
accurately predict a new step. The development and
test set performance was lower (r’=0.88 and r’=0.80,
respectively) indicating that our model overfit to the
training set. Given the relative performance of the
train-dev set and test sets compared to the training set,
our variance problem seems to arise from person-to-
person variability instead of step-to-step variability. As
an obvious example, there is a person in the
development set with true peak KAM values between
6.5 and 8%BW*ht, but the training set did not train on
any KAM values above 6.5%BW+*ht (Figure 4). We
attempted to solve this overfitting problem with L,
regularization and dropout; both provided minimal
benefits suggesting that more diverse training data is
necessary for our model to generalize well to new
people.

The FC network performed better than the 1D
CNN or LSTM models. The data from the first half of
the stance phase is most important for computing the
first KAM peak, so we were able to cut off and
downsample our original timeseries to only 8 timesteps
for the FC model. This downsampling and cutting
reduced the input data size (118 features * 8 timesteps)
which proved to be small enough for a FC network
with a reasonable number of parameters. Thus, the
benefits of the CNN and LSTM of learning prior and
future timesteps with a reduced number of parameters
was less beneficial for our application. If we were
predicting the entire timeseries output from a higher
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Figure 5: A saliency map shows which input changes cause the greatest change in output (peak KAM). Darker colors
signify more important input features. The top map shows the saliency of all 118 input features, and the bottom map
shows time-averaged saliency for the front-back (x), side-side (y), and up-down (z) marker positions. The side-side knee,
heel, and neck positions as well as the up-down position of the swing leg front pelvis heavily influence output
predictions. These positions align closely with important variables in the dynamic equations of motion for the KAM.



frequency, longer duration activity, the LSTM and
CNN may have performed better than the FC network.
The well-structured nature of our problem likely
allowed for a shallow FC network to perform well. The
input data were normalized by leg length and output
data was normalized by body mass and leg length
making the input and output data agnostic to body
shape. Additionally, marker positions, velocities, and
accelerations are related to KAM with few
nonlinearities in the dynamic equations of motion,
which likely allowed a network with only one hidden
layer and nonlinear activation function to perform well.

Our model learned salient features that are
similar to terms in the dynamic equations of motion.
The KAM is the frontal plane moment about the knee
joint (Figure 6), so the frontal plane (side-side and up-
down) variables drive the equations of motion. The
front-view only model performed with r’=0.78 on the
test set which was nearly equivalent 3D input model
(r>=0.80). The side-view model (test 1’=0.44)
performed worse than the front-view model because
the side-view input is devoid of the important side-side
information. Additionally, the saliency map elucidated
that changes in the side-side positions of the knees,
heels, and neck led to large changes in the KAM peak
which align with previous findings. “Toe-in gait”
(Shull et al., 2013), which involves moving the heel
outward, “medial knee thrust gait” (Fregly et al.,
2007), which involves moving the knee towards the
centerline of the body, and “trunk sway gait”
(Miindermann et al., 2008), which involves side-to-side
motion of the trunk are all previously identified KAM-
reducing gait modifications. Finally, the up-down
position of the swing leg frontal pelvis was an
important predictor of changes in KAM in our model.
This aligns with a common qualitative clinical
assessment where clinicians watch for the swing-side
pelvis to drop during gait as an indication of a large
KAM. The saliency map corroborated previous
observations on how to change the KAM, but it could
also be used to identify new gait modifications.

‘e Figure 6: KAM can be estimated using
Newtonian dynamics as the frontal plane
moment of the ground reaction force (red)
about the knee joint. The KAM is affected
by the side-side position of the heel

KM (center of pressure, COP) and knee as well

as the side-side position of the center-of-

mass (COM) which is in part driven by
the side-side position of the neck and up-
down position of the swing-side pelvis.

This study had several limitations. Our final
model overfit to the training set, causing reduced test
set accuracy. Data augmentation and adding more
people to the training set may help this problem.
Second, this study is motivated by the use of a 2D
camera to identify joint positions and the KAM, but the
inputs to our model were the high-fidelity marker
positions from a motion capture system. Our model
demonstrates that the KAM can be predicted without
forceplates, but it remains unclear if video-based joint
position recognition will provide high enough quality
data to accurately predict the KAM. We have recently
installed 2D cameras in our gait lab and plan to utilize
the pre-trained weights from the present study to
expedite training for a model that inputs 2D video data.
Finally, our outcome metric, mean squared error,
prioritized correctly predicting KAM magnitude for
each step; however, intra-person change in KAM peak
is the most clinically relevant outcome. We plan to
train a new model that predicts the distance that each
step lies from each person’s mean KAM

In conclusion, a fully-connected neural
network accurately predicted the peak KAM from the
trajectories of anatomical landmarks. This study brings
the field one step closer to performing personalized
biomechanical assessments outside of a motion capture
lab and in any clinic with access to a 2D camera. By
making gait retraining available to the general
population, we hope to reduce the debilitating effects
on knee osteoarthritis on mobility worldwide.
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