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1 Introduction

1.1 Problem Motivation

Fig. 1. Labeled Fundus Photo

Most cases of blindness in American adults occur due to late-stage diabetic
retinopathy [5]. Analyzing blood vessels in retinal images is key for early diag-
nosis of diabetic retinopathy, but is often difficult to discern in blurry retinal
images. Automated segmentation would vessels stand out, and could thus aid
less experienced physicians in diagnosing the disease.

1.2 Problem Statement and Dataset

The goal of this project will be to build a deep neural network to compute an
image mask of blood vessels in fundus photos. The dataset used for this is the
DRIVE dataset [1], a commonly referenced dataset for segmentation of blood
vessels from fundus photography. The dataset consists of 20 training examples
and 20 testing examples, each of which consists of a fundus photograph and an
accompanying image mask labeling where the blood vessels are (see Figure 2):

Data Augmentation Because we only had 20 training examples, and Ron-
neberger et al. recommends ” extensive use of data augmentation,” [2], we decided
to augment the pictures in two ways: first, given that the optic disk appears on
either the left or right of the image with equal frequency, we horizontally flipped
each picture. Second given the natural rotation of the eye, we also slightly rotated
each original picture by a random amount that wouldn’t exceed 0.2 degrees. The
result was 40 additional training images from the augmentation, resulting in 60
total training images, a scale that has had empirical success on other datasets,
such as segmenting neuronal structures in electron microscopic stacks [2].
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Fig. 2. Retinal photo (left), image mask with segmented blood vessels (right)

2 Approach

Previous models on this dataset include a variety of supervised approaches, such
as a hierachal Markovian approach, and unsupervised approaches, such as sup-
port vector machines and random forest classifiers using a hybrid of features from
a variety of different filters [3]. Savu et. al. uses a sliding window architecture that
predicts each pixel based on the image patch that pixel centers [4]. Ronneberger
et. al., however, proposes the U-Net architecture [2], which can train on very
few examples and outperforms the sliding window approach on other biological
dataset; we thus propose that model to be used on fundus photography.

2.1 TU-Net Architecture
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Fig. 3. U-Net Architecture [2]; the number on top of each layer represents the number
of feature channels in that layer.
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First, two 3x3 convolutions are applied on the 512x512 input image, in-
creasing the number of feature channels to 64. Then, a contracting path of 4
downsampling steps is applied, each downsampling step consisting of two 3x3
convolutions and a 2x2 max pooling operation. Two additional 3x3 convolutions
are applied after this contracting path; then, the resultant layer is put through
an expansive path (symmetrical to the contracting path) of 4 upsampling steps,
each consisting of a 2x2 ”up-convolution” [2](4) concatenated with the result
of the downsampling step of the same depth (see Fig. 2 above), followed by 2
3x3 convolutions. 2 3x3 convolutions are then applied on the previous layer be-
fore a 1x1 convolutional filter with a sigmoid output is applied, resulting in an
image mask, where each pixel is a sigmoid output over the final image mask,
labelling each pixel with the probability that it belongs to a blood vessel. With
the exception of the final 1x1 filter with a sigmoid activation, all convolutions
and up-convolutions use SAME padding and are followed by RELU activations.
Additionally, dropout is applied at the end of the 3rd and 4th downsampling
steps, with keep_prob = 0.5, and both the max-pooling operations and the up-
convolutions use strides of length 2 in both the z and y directions. [2]

The contracting path is designed to capture context in the image [2]. Each
downsampling step doubles the number of feature channels via the two con-
volutions, while halving both the z and y dimensions of that layer through
max-pooling.

The expansive path, which is designed for ”precise localization” [2], does
the opposite; in each upsampling step, the ”up-convolution” (covered in the
next section) doubles the x and y dimensions of the layer it is applied to while
halving the number of feature channels, and applying 2 3x3 convolutions in the
upsampling step also halves the number of feature channels.

A problem that can arise is the loss of context information; because each
downsampling step doubles the number of feature channels, yet each upsampling
step reduces the number of feature channels by a factor of 4, a significant amount
of the context information learned through the contracting path that would be
useful in helping with localization is lost at each step. To solve for this, during
each upsampling step, after the up-convolution is applied, the layer from the
downsampling step with the same number of feature channels is concatenated
before the 2 3x3 convolutions are applied, thus providing context learned during
the contracting path, and ensuring that each upsampling step only halves the
number of feature channels. For example, during the first upsampling step, the
up-convolution reduces the number of channels from 1024 to 512; then, the
downsampling step with 512 channels is concatenated to the result of the up-
convolution, to create a 1024-channel layer that is reduced to 512 channels again
after the 2 3x3 convolutions are applied.

?»Up-Convolution” Up-convolutions are a critical part of the expansive path
of the U-Net, as they are required to expand the layer and upsample. Given a
nxn input layer, and a k x k filter, an up-convolution is performed by taking each
element of the input layer, scaling the filter by that element, and setting the k x k
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submatrix of the output that corresponds to the position of that input element
equal to the scaled filter. To determine the position of the output layer that
corresponds to a given element, start by choosing the top-left £ x k submatrix
to correspond to the top-left element of the input layer. Then, when moving
over to the next input element in either direction, shift the k& x k& submatrix
of the output by stride_length positions in the same direction, and apply the
same operations. If the up-convolution result on one element overlaps on that of
another element in the output, sum the results in the output cells that overlap.
Figure 4 is a 1-D example that demonstrates this more clearly. As is the case with
normal convolution, the number of up-convolution filters directly determines the
number of channels in the output layer of the up-convolution.
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Fig. 4. 1-D up-convolution

2.2 Loss Function and Evaluation

The loss function used is the summed binary cross-entropy loss over each pixel,
ie., if we let Y and Y denote the ground-truth and generated image masks
respectively, then

512 512
J= =33 Yigulog Vi + (1 - Yign) log (1 - Vi)
i=1 j=1
The model will be evaluated on mean pixel accuracy, the most commonly
referenced metric in the Aguirre-Ramos et. al. review of previous approaches on
segmenting blood vessels [3].

3 Results, Discussion, and Further Approaches

3.1 Results

After training this U-Net for 5 epochs at 2000 steps per epoch on a K80 GPU,
this model outperforms the approaches summarized by Aguirre-Ramos et. al. [3]
on accuracy on the test set, as seen in Figure 5:

Visualizations of some of the segmentations predicted by the U-Net can be
seen in Figure 6.



Blood Vessel Segmentation from Fundus Photographs 5

Model Test Training | Test
Accuracy|  Loss Loss
U-Net 0.9640 | 0.0485 |0.1438
Sliding Window| 0.9013 - -
ConvNet [4]
SVMs [3] 0.9510
Hierarchal 0.9439
Markovian

(Unsupervised)
3]
Random Forest | 0.9464
on Gabor Filter
Features [3]

Fig. 5. Results of U-Net, as well as comparisons to other approaches.

Fig. 6. Top Row: fundus photos from test set, Middle Row: model-generated image
masks, Bottom Row: ground truth image masks (each column is one test example)

3.2 Discussion

While this model outperforms previous approaches, there is still room for im-
provement. First, as can be seen in the results table, training loss is signicantly
lower than test loss; this is a sign that overfitting might be happening, and so
applying increased dropout or more data augmentation might help. Second, a
quick glance at Figure 6 shows that the bulk of the error comes from false pos-
itives, especially when blood vessels are very faint in a field-of-view that isn’t
very bright to begin with. This can be mitigated by adjusting the loss func-
tion, and placing increased penalty on false positives. Additionally, many of the
false positives occur outside of the field of view of the fundus photograph. Thus,
given that field-of-view masks is defined automatically from the photo, if include
the field-of-view mask as an additional input layer, that is only applied at the
very end of the U-Net to ”drop-out” all the pixels that aren’t in the field of
view, many false positives can be fixed instantaneously. Finally, evaluate dif-
ferent metrics that have become more prevalent in image segmentation, such
as the DICE coefficient, and possibly retrain the U-Net to minimize the DICE
coefficient instead of cross-entropy.

3.3 Code Repo

https://github.com/meeranmismail/unet_fundus_segmentation
This repo was originally forked from https://github.com/zhixuhao/unet.



6

M. Ismail

References

1.

J.J. Stall, M.D. Abramoff, M. Niemeijer, M.A. Viergever, B. van Ginneken, Ridge
based vessel segmentation in color images of the retina, IEEE Transactions on Med-
ical Imaging, 2004, vol. 23, pp. 501-209

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation https://arxiv.org/pdf/1505.04597, 18
May 2015.

Hugo Aguirre-Ramos, Juan Gabriel Avina-Cervantes, Ivan Cruz-Aceves, Jos Ruiz-
Pinales, Sergio Ledesma, Blood vessel segmentation in retinal fundus images using
Gabor filters, fractional derivatives, and Expectation Maximization, Applied Math-
ematics and Computation, 2018, vol. 339, pp. 568-587.

. M. Savu, D. Popescu and L. Ichim, ”Blood vessel segmentation in eye fundus im-

ages”, 2017 International Conference on Smart Systems and Technologies (SST),
Osijek, 2017, pp. 245-249.

Klein R, Klein B. Vision disorders in diabetes. In: National Diabetes Data Group,
ed. Diabetes in America. 2nd ed. Bethesda, MD: National Institutes of Health,
National Institute



