It’s a bird... It’s a plane... It’s a Type Ia supernova!

Astronomical Object Classification from Photometric
Time-Series Data

Ryan W. Gao
Stanford University
rgao@stanford.edu

Abstract

Astronomical data volume is exploding due to improved telescope technology, and
thus, the field requires novel methods for data processing. This paper focuses on
automated object classification based on photometric time-series data and object
metadata, such as sky position and redshift. We evaluated both convolutional
and recurrent neural networks (CNNs and RNNs), both with and without object
metadata. The best performing model - the CNN with metadata features - achieved
an equal-class-weighted accuracy of 70% on the 14-class classification problem.

1 Introduction

Astronomy is a field that is ripe with potential for applications of deep learning. The amount of
data collected by the world’s telescopes is increasing exponentially, and there is a concurrent rise
in the need for efficient and accurate automated data processing techniques. Going live in 2022,
the Large Synoptic Survey Telescope (LSST) is expected to generate 20-40 TB of data per night
of observation. The ongoing Kaggle competition PLAsTiCC (Photometric LSST Astronomical
Time-Series Classification Challenge) [1] is just one example of the concerted effort by the field’s
experts to leverage the techniques of machine learning to process data of this scale. The LSST will
be recording primarily photometric time-series data, which are discrete measurements of object
brightness within a particular wavelength range (called the passband). The LSST will observe both
galactic objects (within the Milky Way) like variable stars and binary star systems, and extragalactic
sources like quasars and supernovae of various types (Ia, Ib/c, II), as well as potentially previously
unobserved object classes. This project provides a solution to the PLAsSTiCC challenge, by applying
convolutional and recurrent neural networks (CNNs and RNNs, respectively) to this time-series
classification problem.

2 Related Work

Historically, automated object classification in astronomy has been focused on identifying broad
categories, such as galaxy vs. star using single-measurement spectroscopic data from sky surveys.
The learning algorithms of choice were Naive Bayes [5] and decision trees [6]. Recent work has
been done on classifying light curves (multiple measurements over time) with more sophisticated
classification algorithms like random forests, SVMs, neural nets, boosted decision trees, and even
bi-LSTMs [8,9,10,11,12,13]. However, these studies have all focused exclusively on classifying
different types of supernovas, and most require first fitting the light curve to a supernova-specific
parametric model called SALT?2 [14].

CS230: Deep Learning, Autumn 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3 Dataset

The dataset we use is sourced from the PLASTiCC Kaggle competition, hosted by the LSST Transients
and Variable Stars Collaboration team. The dataset is generated from simulations of variable and
transient sources (objects whose brightnesses change over time), with noise characteristics consistent
with current state-of-the-art telescope technology. Because this is from a Kaggle competition, only
the training set has labels, so we will scope this paper to analysis using only that set of 7848 examples.
Due to the small dataset size, we use a 75/25 training/dev set split, and choose to forgo a test set.

3.1 Features

In this paper, we will refer to features that have multiple instances per object as “data,” and features
that have one value per object as “metadata.”

The input data features include the photometric time series of brightness measurements f1lux taken
with 6 different color filters, or passbands. The measurements are taken aperiodically over a span
of 2 to 3 years, with the datetime expressed as Modified Julian Date, mjd. Each flux measurement
is accompanied by the estimated flux error flux_err and a boolean detected, indicating whether
there was a change detected relative to the background “template” image.

Each object is also associated with the following metadata: the location in the sky (in both equatorial
coordinates - ra, decl - and galactic coordinates - gal_1, gal_b), whether it was part of the “Wide-
Fast-Deep” (WFD) or “Deep Drilling Fields” (DDF) survey ddf, the distance from Earth (measured
in units of redshift, both photometrically hostgal_photoz and spectroscopically hostgal_specz,
and in units distance modulus distmod), the photometric redshift error hostgal_photoz_err, and
the extinction due to galactic dust mwebv.

Finally, there is a metadata field target, which is the ground-truth object class. There are 14 possible
classes, but this field is deliberately obfuscated in the Kaggle dataset, so we don’t know the underlying
astrophysical object types.

3.2 Pre-processing

Object 1920, Class 90

: » } Passband 0
200 H" Passband 1
; } Passband 2
150 r 4 @ } Passband 3
(4 } Passband 4
% s
..T=. 100 . i } Passband 5
50 ve .0
. p o S "
01 @ b bpen. pe | cwh borkeprm
=50 T T T T T
59600 59800 60000 60200 60400

Modified Julian Date (M)D)

200
150
100

Passband (Color Channel)

150 200
Time Step t

Figure 1: £1lux data transformation: a) Original data, with irregular intervals and length.
b) Final input data, with missing data interpolated and length normalized to 1" = 352.

In order to convert the raw data streams into a format suitable for training our classifier, we pre-process
the data using the following steps:

1. Observations are performed in only one passband at a time, so we linearly interpolate £1ux
for the other 5 missing passbands at every measurement time mjd.

2. We replace measurement times mjd by regular time steps ¢ = 0,1, 2,.... This ignoring
irregular intervals between measurements, but standardizes the data input format.

3. Finally, we resize the data to the maximum length observed in the training set ' = 352,
using linear interpolation.

In addition to the 10 provided, we derive 6 more metadata features from the f1lux time series: min,
max, mean, stdev, median, and skew (or third moment). We scale all 16 metadata features to zero
mean and unit variance.

4 Methods

4.1 Loss Function

As is standard for multi-class classification problems, we use a cross-entropy loss function with
weights

c M
. Die1 Zj:l w;Yi; log pij
Ziczl w;
where C' = 14 is the number of classes, M is the total number of objects, y;; is the indicator variable
of object j belonging to class i, p;; is the prediction probability of object j belonging to class 4,

and w; is the weight of class 7. For numerical stability, p;; are clipped to fall within the interval
[10715,1 — 10715].

The 14 target classes are unbalanced, with some classes having 80x the number of examples of
other classes. Thus, we assign weights such that each class is equally important: w; = 1/M;, where
M; is the number of objects of class ¢ in the training set.

E:

b

Lastly, our optimization algorithm is Adam [2] with typical parameters of 51 = 0.9, 82 = 0.999, € =
10~8. We find the optimal learning rate o = 0.01 by training roughly 20 epochs and searching over
the logarithmic space between o = 1075 and o = 10°.

Training loss
NOONONN
o ~N - o

b
@

107° 107 107¢ 1073 1072 107 10°
Learning rate a

Figure 2: Hyperparameter tuning - training loss after 20 epochs, as a function of learning rate «.

4.2 Models
We train the following two neural network architectures on the time-series data:

e 1D CNN: This convolutional neural network (CNN) is inspired by the VGGNet architecture
[4]. Every CONV layer has filter size 3 and same padding (p = 1), and is followed by
BatchNorm, ReLLU, and MaxPool of filter size 2 and stride 2. Below is the architecture,
along with the dimensions after each block (length x channels).

INPUT (352 x 6) — CONV16 (176 x 16) — CONV32 (88 x 32) — CONV32 (44 x 32)
— CONV32 (22 x 32) — CONV32 (11 x 32) — FLATTEN (352)

e RNN: This recurrent neural network (RNN) architecture is single-layer, uni-directional, and
uses long-short-term-memory (LSTM) cells [7] with 32 hidden nodes. The output is from
the final time-step 7" = 352.

To incorporate the metadata features, we concatenate the output of the CNN or RNN to the 16
metadata features. Finally, the final output layer is fully connected with C' = 14 nodes and softmax
activation.

5 Results & Discussion

5.1 Evaluation Metric
Our evaluation metric is accuracy, weighted such that all classes are equally important:

1 .M g
AZEZZﬁyU’

i=1j=1""

where C, M, M;, and y;; are defined above in Section 4.1. g;; is the indicator variable for predicting
object j belongs to class 1.

5.2 Results

Here are the results after training each model for roughly 46 epochs:

Model | # Trainable Params Training Accuracy Test Accuracy
Metadata only 238 55.07% 48.40%
1D CNN only 16,414 66.26% 55.11%
LSTM only 5,582 48.77% 35.25%
CNN + Metadata 16,638 78.61% 70.09%
LSTM + Metadata 5,806 72.29% 51.58%

As a baseline, we trained a logistic regression model on only the metadata features, which achieved
48% accuracy. Adding the LSTM model marginally improves the accuracy to 52%, but adding the
CNN model significantly improves accuracy to 70%. This can be explained by the CNN encoding
significantly different information about the time-series than the 6 simple derived metadata features
(min, max, mean, stdev, median, skew). Figure 3 illustrates the recall, or fraction of true class ¢
items correctly labeled, for each of the 5 models. For example, the CNN-only model performs better
than the metadata-only model on some classes (15, 53, 67) and worse on others (64, 95). Thus, the
combined model can take advantage of information from both models.

10

Meta 1046 0.44008 ouﬂom@ 02 03 s
CNN ﬁ 022 025 016 016 ‘u 088 PEN 035 .
LSTM -0.29@ 004 005 PEE 012 032 025 002012 M 037 i
CNN+Meta H 019 018 04 @M o4
LSTM+Meta m 044 008 028 034 036 026 03 b
6 15 16 4 5 53 6 64 6 67 8 9% 92 o

42 52 65 67 8 90 92 95 -00
True + Predicted Class

Model

Figure 3: Recall matrix, showing the fraction of objects of class 7 correctly labeled by a given model.

From the confusion matrix in Figure 4, the five most difficult classes to predict, 42, 52, 62, 67,
and 90, are often confused with each other. From the metadata features, these classes are always

extra-galactic objects, and from visual inspection of the light curves, they all appear to be abrupt flux
increases followed by exponential-like decay in brightness (example in Figure 1). This description
matches that of a supernova, so there is potential in augmenting the model with a supernova-specific
parametric model, such as the ones described in Section 2.

Weighted accuracy: 70.09% 10
\9-0 0 0 0 O O 0 015 0 0 002005 0

»OmoDOZO 0 008 002 0 002 0 005 O 0

15

-0 OODOODOOZOOODOBD

16

-0 004 0 019012 0 026002 0 018 0 018 O 0

42

-0 005 0 012018 0 012002 0 02 0 03 O 0

W
-DDOODOOODDOOD - 0.6

-0 002 0 009006 0O /04 008 0 028 0 008 O 0

53

z
gg
§$- 0 008 0 0 0 0 016 0 004 0 004 O 0
[
£-003 0 004 O 0 0 0 0 0 0 0 0 0 -04
r 0 0 0 006004 0 019 009 © E 0 007 0 0
g-0 0 0 0 0 0 0 0 0 0 0 0 002
-0 003 0 004007 0 006001 0 016 OOIE 0 001 i

92

-0 00060000000000

0o 0 0 0 004 0 0 0 0 0 0 0 013 0
6 15 16 4 5 53 62 64 65 67 8 %W 92 %
Predicted Label

-0.0

Figure 4: Confusion matrix for the CNN + Metadata model. Values are normalized such that
diagonal elements are recall, or equivalently, such that each row sums to 1.

6 Conclusion

The 1D CNN combined with metadata features performed well on this 14-class classification problem,
reaching 70% weighted accuracy. The RNN architecture was not as successful, only reaching 52%
accuracy. Judging from the size of the training-test accuracy gap, the LSTM model is more prone to
overfitting training data. The first future work item below would most benefit the LSTM model.

6.1 Future Work

e Better control of overfitting, especially via data augmentation based on the measurement
errors flux_err and hostgal_photoz_err, or L; or Ly regularization.

e Better pre-processing of the f1ux data. For example, fitting a supernova-specific parametric
model, or using a more sophisticated representation of irregular time series data, such as a
dm-dt grid [15]. This grid plots the incidence of (A magnitude, A time) pairs between all
pairwise measurements.

e Other neural network architectures, such as ResNets, Inception, and multi-layer RNNs.

7 Contributions & Code

All original work was done by Ryan Gao. Source code for this project can be found at https:
//github.com/rygao/Stanford-CS230-Project.

References

[1] The PLASTICC team and Tarek Allam Jr. and Anita Bahmanyar and Rahul Biswas and Mi Dai and Lluis
Galbany and Renée HloZek and Emille E. O. Ishida and Saurabh W. Jha and David O. Jones and Richard
Kessler and Michelle Lochner and Ashish A. Mahabal and Alex I. Malz and Kaisey S. Mandel and Juan Rafael
Martinez-Galarza and Jason D. McEwen and Daniel Muthukrishna and Gautham Narayan and Hiranya Peiris and

Christina M. Peters and Kara Ponder and Christian N. Setzer and The LSST Dark Energy Science Collaboration
and The LSST Transients and Variable Stars Science Collaboration, “The Photometric LSST Astronomical
Time-series Classification Challenge (PLAsTiCC): Data set,” 2018, arXiv, abs/1810.00001.

[2] Diederik P. Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization,” 2014, CoRR,
abs/1412.6980.

[3] Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang, Edward and DeVito,
Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca and Lerer, Adam, “Automatic differentiation
in PyTorch,” 2017, NIPS-W.

[4] Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” 2014, CoRR, abs/1409.1556.

[5] C. Wolf, K. Meisenheimer, and H.-J. Roser, “Object classification in astronomical multi-color surveys,” 2001,
Astronomy & Astrophysics 365(1):660-680.

[6] Nicholas M. Ball, Robert J. Brunner, Adam D. Myers, and David Tcheng, “Robust Machine Learning
Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using
Decision Trees,” 2006, The Astrophysical Journal 650:497-509.

[7] Sepp Hochreiter; Jiirgen Schmidhuber, “Long short-term memory,” 1997, Neural Computation 9(8): 1735-
1780.

[8] James Newling, Melvin Varughese, Bruce A. Bassett, Heather Campbell, Renée Hlozek, Martin Kunz,
Hubert Lampeitl, Bryony Martin, Robert Nichol, David Parkinson, Mathew Smith, “Statistical Classification
Techniques for Photometric Supernova Typing,” 2010, arXiv, abs/1010.1005.

[9] N. V. Karpenka, F. Feroz, M. P. Hobson, “A simple and robust method for automated photometric classification
of supernovae using neural networks,” 2012, arXiv, abs/1208.1264.

[10] Michelle Lochner, Jason D. McEwen, Hiranya V. Peiris, Ofer Lahav, Max K. Winter, “Photometric
Supernova Classification With Machine Learning,” 2016, arXiv, abs/1603.00882.

[11] A. Moller, V. Ruhlmann-Kleider, C. Leloup, J. Neveu, N. Palanque-Delabrouille, J. Rich, R. Carlberg, C.
Lidman, C. Pritchet, “Photometric classification of type la supernovae in the SuperNova Legacy Survey with
supervised learning,” 2016, arXiv, abs/1608.05423.

[12] Mi Dai, Steve Kuhlmann, Yun Wang, Eve Kovacs, “Photometric classification and redshift estimation of
LSST Supernovae,” 2017, arXiv, abs/1701.05689.

[13] Tom Charnock, Adam Moss, “Deep Recurrent Neural Networks for Supernovae Classification,” 2016,
arXiv, abs/1606.07442.

[14] J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain, N. Regnault, S. Basa, R. G. Carlberg, A. Conley, S.
Fabbro, D. Fouchez, 1. M. Hook, D. A. Howell, K. Perrett, C. J. Pritchet, J. Rich, M. Sullivan, P. Antilogus,
E. Aubourg, G. Bazin, J. Bronder, M. Filiol, N. Palanque-Delabrouille, P. Ripoche and V. Ruhlmann-Kleider,
“SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators,” 2007,
Astronomy and Astrophysics 466 (1):11-21.

[15] Ashish Mahabal, Kshiteej Sheth, Fabian Gieseke, Akshay Pai, S. George Djorgovski, Andrew Drake,
Matthew Graham, the CSS/CRTS/PTF Collaboration, “Deep-Learnt Classification of Light Curves,” 2017, arXiv,
abs/1709.06257.

