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Abstract

In this project, we attempted to solve category classification of clothing items
across large number of classes by using Clothing categories and Attributes
dataset from DeepFashion [2] for training and validation. SOTA work for
fashion uses DeepFashion [2] data along with CNN architectures like VGG-19.
In our approach, we used VGG-16 and Resnet-50 architectures along with
optimizations to improve performance. We got the best performance number
of 75.4% accuracy with Resnet-50 based network. We also investigated
visualization in order to analyze the efficacy of our network architecture.

1 Introduction

Online shopping for fashion items is a complex multi-step process. Part of the problem lies
in incorrect annotations associated with a particular item like mismatches in style, fabric
quality, color, etc. This problem can be solved by automating detailed attribute annotation
and categorization of clothing items with high accuracy. The state of art approach for solving
this problem uses Attention Network [2] based grammar for landmarks, which further refines
the category classification along with attribute prediction.

We propose to achieve the performance as the state of art through experimentation with
some popular base networks like VGG-16 and Resnet-v3,v4. The dataset we are using is
called DeepFashion [2] which has over 290,000 images with rich attributes, landmark and
category annotation.

2 Related work

After looking at various computer vision literature [1, 2, 3] in this space it becomes exceedingly
clear that each of these problem areas can be modeled as various stages of a deep learning
pipeline. In the paper titled “Attentive fashion grammar network” [1] authors have coded a
novel deep learning pipeline for fashion related items. The present solution has attempted to
address the problem with attention and grammar based networks, using various intuitive
relationships between attributes. In the deepfashion paper, the authors have used clothing
landmark and attribute prediction and further pool them to generate category classification
prediction. The baseline network used in their FashioNet architecture is VGG-16.

3 Dataset and Features

The DeepFashion dataset [2] has around 290,000 clothing images. Each image is annotated
with categories, attributes, bounding boxes and landmarks. Following is how the dataset has
been split for training and testing:
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Total data samples = 289222
Training data samples = 209222
Test data samples = 40000
Validation data samples = 40000

3.1 Categories

There are 46 categories in the dataset like dress, tee shirt, coats, shorts, etc. Each category
is of one of the 3 types: upper body clothing, lower body clothing and full body clothing.
Category prediction is treated as a 1-of-K classification problem. Analysis of the training
data (as can be seen from the histograms below) show that the there is immense class
imbalance in the data. In order to address this data imbalance we randomly chose 600
images of each category for training. We also considered creating a model only for upper
body garments. We also sub-sampled test and validation datasets 10000 each.

Clothing Categories Histogram on Training Data Clothing Categories Types Histogram on Training Data

6x10¢
“" ‘I“H HI' | £ - £
2 g
BE3E55 g $

Clothing Category Types

og of count
logof count

ver
Halt

Jpper Body Clothe

FullBody Clot

Lower Body Clot

Figure 1: Clothing Categories Histogram Figure 2: Clothing Category Types His-
on Training Data togram on Training Data

Note that the Y-axis in both category histogram and category type histogram above is log
of the value.

3.2 Attributes

There are 1000 attributes that are annotated in the dataset like backless, animal print,
knit, faux leather etc. These attribute are of 5 types: texture-related attributes, fabric-
related attributes, shape-related attributes, part-related attributes, style-related attributes.
Attribute prediction is treated as a multi-label tagging problem.

4 Methods

In order to solve the classification problem baseline VGG-16 model was used, as it is the
base model used in DeepFashion [2] paper. We used pre-trained weights for VGG-16 and
collected loss and accuracy numbers. We used categorical cross-entropy as a loss function
as classification is done over 46 categories of clothing items. After VGG-16 numbers with
pretrained weights were in line with DeepFashion [2] reference, we graduated to ResNet-50 as
our baseline model. ResNet-50 network is qualitatively better than VGG-16 as it approximates
more complex functions, because of its feed-forward branch and deeper architecture, which
was a need given highly nuanced features of fashion items images determining categories.

The equation for categorical cross entropy is in Figure 3, where N is the number of training
samples, C is the number of classes. Yi is 1, when it belongs to class Cc and p is the
prediction probability of sample Yi to be in class Cc,
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Figure 3: Categorical Cross Entropy Loss



4.1 Implementation

Our end-to-end network is a modified version of Keras implementation of VGG-16 [3] and
ResNet-50 [4]. This implementation includes code for Imagenet pretrained base models
in Keras [5]. Our implementation is available at: https://github.com/souschefistry/cs230-
midterm-proj-review. The most important modifications that we made were:

Gradient Clipping: We experimented with gradient clipping (clipnorm threshold = 0.5)
for during a ResNet-50 finetuning run with last two residual block weights unfrozen.

Regularization: We added L5 regularization for category embeddings both at kernel level
(applied on weights) and activity level (applied on outputs) for fine tuning run on ResNet-50.

Early stopping: We measure validation accuracy for each task separately for each epoch,
and use the test results from the best validation epoch for each task.

Learning rate decay: Our implementation uses step decay scheduler in Keras [6] to

drop learning rate by a factor every few epochs. Mathematically it can be written as
Ir = Ir0 d,ropfloor(epoch/epochsdrop)'

4.2 Selecting the default values

Given the large number of hyperparameters (Non-trainable params: 53,120) for the network,
it was useful to establish default values to use as the basis for experimentation. For the
architecture, we set initial learning rate [r0 to 0.01 by borrowing recommendations from here
[7] with Ir dropping by a factor of 0.5 every 10 epochs. For a couple of runs we applied activity
and kernel Ly regularization values to 0.01 which are Keras defaults. As per our observation
this didn’t help in improving model performance, infact it had opposite effect. While it’s
difficult to capture exact interplays between various model hyperparameters one intuitive
explanation for the drop was that kernel regularizer in Keras which applies to weights along
with activity regularizer that applies only to output in last layer causes unintended damping
of activations. Uneven distribution of available training samples per fashion category makes
it even harder for the network to learn meaningful embeddings for all categories.

5 Experiments/Results/Discussion

This section gives the details of the results of our experiments with VGG-16 and Resnet-50.We
used combination of offline / online training for VGG-16 baseline [3]. Learned category
embeddings from bottleneck are saved on disk for all training samples and was used later
for category prediction on validation / test dataset with RMSProp optimizer. While this
works well for shallow networks with smaller dataset we could not scale it for larger training
samples in VGG-16; ResNet-50 offline training was very slow along and disk space became
a concern. Our ResNet-50 baseline [4] and all finetuning presented here are based on our
online training implementation.

5.1 ResNet50 finetuning

One of the key finetuning hyperparameter we have played with is that which layers to freeze
and which ones to finetune. Following what is described as residual learning [8] in the path
breaking paper we finetuned by residual blocks rather than by going layer by layer. As per
our results indicate 3 residual blocks retraining helped the most, gave better accuracy in
predicting compared to 1 or 2 residual block(s) fine tuning over. L2 regularization didn’t
help with or without learning rate decay. We tried some popular optimizers e.g. SGD,
RMSProp and Adam. Adam gives us the best result on the dataset. SGD run data haven’t
been reported since our experiment runs didn’t converge.



Table 1: End-to-end ResNet-50 finetuning results.

Task Optimizer learning rate epochs | Test Accuracy | Test Loss
1: ResNet50 finetuned after 153 layers Adam 0.001 80 59.3536 1.49

2: ResNet50 finetuned after 153 layers

+ gradient clipping + 12 regularizer Adam | 0.001, 0.5, 0.01, 0.01 || 50 64.0125 1.68 |
3: ResNet50 finetuned after 143 layers

+ early stopping Adam | 0.001, 10 || 100 75.498 095 |
4: ResNet50 finetuned after 143 layers

+ early stopping SGD 0.0001, 0.9 100 - -

5: ResNet50 finetuned after 143 layers || RMSProp 2e-3, 10 100 66.3 1.69

6: ResNet50 finetuned after 143 layers Adam 0.001 100 82.1819 0.64
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6 Visualization

This section includes visualization of two kinds, a) Intermediate Activation Visualization,
and b) Heat map of class activations [11].

6.1 Intermediate Activation Visualization

Activation Visualization tells us how various layers transforms an image input based on
the function learned by activations at each layers. In the earlier layers of VGG-16 edge
detection is done primarily, as seen in the diagram. In later layer, the activations learn
more visually complex characteristics e.g. sleeve, neckline etc. with respect to the clothing
item. Additionally we also see that the later layers have more sparsity in activations as
visible by the all black segments in the activations map. In earlier layers, there are edges
to be detected, some edge being detected. However in later layers the characteristics being
detected may not be present in the part of the image where we see a black patch.

b) Layer0-Activation

Visualization of Activations for VGG-16. a) Sample input image from DeepFashion, b) Activations with padding and image augmentation,
¢) #1 maxpool activations, d) #3 ConvActivations, e) #5 Conv Activations, f) #5 MaxPool Activations

Figure 9: Visualization of intermediate Activations

6.2 Heat-map of Class Activations

This visualization illustrates the heat-map of the class activations over input images. It
is based on Class Activation Mapping (implementation based on Grad-CAM][13]), that
highlights the important regions in the image and their contribution towards predicting a
concept class. The approach computes the gradient of the input images with respect to the
final convolution layer

Based on our analysis, we can see that there is marked difference in terms of the correctness
of the weights of image segments in predicting the class. In the successful case, where the
clothing category is correctly classified, the activations heat-map seem to be focusing on the
intuitively better segment of the image. In the activation heat-maps below (Figure 9), we
can see that (a), (¢), (d) and (e), the predictions are as expected and seem to be focusing
on the segments which define that clothing class. However in (b), a ’Jacket’ is incorrectly
classified as a "TrenchCoat’ and in (f) the 'Bomber-Jacket’ is not classified at all.

VGG-16. Highest Predicted class with probability are: (a) TrenchCoat: 99.5%, (b) Trenchcoat: 26.5%, (c) Jeans:
58.8%, (d) Cardigan: 37.4%, (e) Suit: 81.2%, (f) Jeans: 44.6%

Figure 10: Visualization of Heatmap Activations



6.3 Visualization Analysis

A visual analysis of the heat-maps of activations illustrates that the discriminative segments
on the clothing items are mainly at bust, waist, seams etc. In Figure 9(b), the missing belt
and shorter length is not paid attention to. Additionally, in all these images some of the
segments or specifically the clothing landmarks like sleeves, length of lower clothing item
seem to be missing. For example in Figure 9(c), the item could have been a ’Jeans-Short’,
but there is no activation owing to the length. In Figure 9(f), there is hardly any activation
for the upper body items, which points to spatial attention not being applied adequately.
This analysis points to two missing techniques from our approach a) clothing landmarks
features, b) attention mechanism.

7 Conclusion/Future Work

The key learnings of this work are threefold. Firstly our results confirmed how a deeper
network which transfers activation across layers is better at learning visual concepts. Secondly,
when you have lots of training data you can afford to go deeper in the network with unfrozen
weights. DeepFashion clothing attributes dataset has 4000 images per class with uneven
distribution; some classes have 0 or less than 100 images per class. This is quite less for
end to end training from scratch. That’s where transfer learning becomes vital. Training
more layers allow pretrained model to learn better feature specific to the type of images it is
looking at. Thirdly our visualization experiments indicated how the lack of visual attention
and landmark inputs, leads to lack of accuracy in classifying the clothing items.

One of the possible next steps would be apply visual attention mechanism for category
classification. Fine grained categorization for clothing attributes would be a good direction
to explore. Based on our learning we would use visualization to do manual analysis of our
future approaches.

8 Contributions

All team members were involved throughout all the phases of the project and discussions.
Data analysis, dataset cleaning up and preparation was mainly done by Shweta. Experiments
and model training were mainly done by Dibyajyoti. Visualization was done by Abhishek.
Logistics, reports and poster creation were mainly handled by Shweta and Abhishek.
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Appendix
8.1 VGG16 baseline results

Figure 11: VGG16 Figure 13: VGG16 Figure 14: VGG16
baseline train accu- Figure 12: VGGI16 baseline validation baseline validation
racy baseline train loss accuracy loss

8.2 ResNet50 baseline res

Figure 15: ResNet50 baseline train
accuracy

Figure 17: ResNet50 baseline valida-
tion accuracy

Figure 16: ResNet50 baseline train
loss

Figure 18: ResNet50 baseline valida-
tion loss



