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Abstract

We investigate an end-to-end goal-oriented dialog system for purpose-specific
domains. We have focused on the problem of automating IT tech support. We
explore various end-to-end learning solution architectures. We present evaluation
metrics and conclude that Bidirectional Long Short-Term Memory (LSTM) and pre-
trained Bidirectional Encoder Representation from Transformer (BERT) networks
generate the best results on the Ubuntu Dialog Corpus (UDC) dataset. The transfer
learning through pre-trained BERT is the most promising solution as it has better
accuracy and runtime than Bidirectional LSTM.

1 Introduction

An end-to-end goal-oriented dialog system aims at providing accurate responses to user queries during
a dialog. IT tech support is a manually intensive task and this domain contains rich support logs and
hence provides a great opportunity for building dialog agents using deep learning methods. Traditional
dialog systems have a complex pipeline consisting of independently developed components of spoken
language understanding. Such a system requires a lot of handcrafted rules and domain specific
knowledge. Furthermore, these complex pipelines are prone to cascading errors from each stage.
In this paper, we use Ubuntu Dialog Corpus (UDC) [5], that consists of context-response pairs, to
explore an end-to-end learning model that takes input context c, and outputs scores for candidate
responses r and then selects k best responses as defined by the model parameters.

2 Related work
2.1 Task-Oriented Dialog Pipeline Systems

Figure 1 shows a typical pipeline architecture of a task-oriented dialog system. The dialog systems
consists of a number of components connected together in a pipeline which make it hard to track
source of errors and optimize the system for a global target [1].
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Figure 1: Pipeline architecture for dialog systems [1]
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Figure 2: UDC Dataset Size and Characteristics

2.2 End-to-end Dialog Models

Wen et. al [2] proposed end-to-end dialog model with connected systems components such as Speech
language Understanding(SLU), Dialog State Tracking(DST), and dialog policy. This model suffers
from the limitation of components being trained separately and does not generalize well to unseen
dialogue states. Bordes et. al [3] proposed a mode that uses an RNN to encode the dialog state and
used end-to-end memory network[weston]. We have used similar approach to generate encodings for
the the dialog using LSTM. Williams et.al [4] have proposed a hybrid network for dialog that can be
trained with supervised and reinforcement learning. We plan to extend our work to use reinforcement
learning to supplement the current supervised learning models.

3 Dataset and Features

The Ubuntu Dialogue Corpus [5] is created from a collection of logs from Ubuntu related chat
rooms on the IRC network. These chatrooms are commonly used for obtaining technical support
with various Ubuntu issues. Users ask a general question about a problem they are having with
Ubuntu. Then, another more experienced user replies with a potential solution, after first addressing
the username of the first user. Basic statistics on the dataset is presented in Figure 2. This data
possesses the following characteristics: i. Two-way conversations between humans, ii. Large number
of conversations, iii. Multi-turn conversations (more than 3), and iv. Task-specific conversation as
opposed to general purpose.

3.1 Data preprocessing

We process the raw data into training data that contains context, response utterance which we aim
to correctly identify, and a flag label that indicates whether or not the response was the actual next
utterance after the given context. In the context __eou__ means end of utterance without a change
of turn, and __eot__ means end of turn. Therefore the context represent the dialog between to chat
users. This is illustrated in figures 3 and 4. The dataset csv files are converted into tfrecord files that
contained Google’s protobuf serialized representation of the data. To create this representation, each
distinct word is converted into a unique integer from the dictionary of vocab words. In case of BERT,
we had to change the conversion process, where the context and the responses were converted into
BERT encodings and then converted into a tfrecord file.
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Figure 3: UDC Training Set Figure 4: UDC Test Set

The validation and test sets contain context, ground truth, and multiple distractors. In the Figure 4
we show two distractors with one ground truth for a given context. Having multiple distractors is
useful when computing Recall @k metrics as these can be used to alter the difficulty level of the
classification task. We have used train, validation and test split of 96%, 2%, and 2%.
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Figure 6: Multi-layer LSTM Network.

4 Methods

We have employed three approaches to evaluate the performance of end-to-end dialog systems on
UDC dataset: classical information retrieval methods, supervised learning models with LSTMs and
transfer learning with pre-trained models using BERT [6].

4.1 TF-IDF

We used TF-IDF, commonly used in document classification, as the baseline model. TF-IDF captures
how important a given word is in the context. TF-IDF vectors are computed for the context and all the
candidate response, and the one with the highest cosine similarity is selected as the correct response

[S].

4.2 LSTM models
4.2.1 Single layer LSTM

LSTM units capture longer-term dependencies in sequences. We implemented a Siamese network
with shared weights to produce the encodings of the context and the response , similar to Lowe et
al. [5]. This Dual Encoder architecture is shown in Figure 5. The words [c1, ¢2, ...] in the context
and words [r1, r2, ...] in the response are each converted into embeddings using GloVe [8]. These
embeddings are the inputs to the LSTM cells. The output of the last LSTM cell represents the
encoding of the context and the response as indicated by c and r, respectively in the figure.

Assuming the the context and response embeddings, ¢, and r are of size d, similar to a generative
approach, a new context ¢’ is computed by multiplying a weight matrix M € R%9 with the response
embedding to ¢/ = Mr. The inner product of this new context, ¢/, is multiplied with the original
context, ¢, and bias b € R? is added to the product, to get distance measurement and this distance is
used as an argument to a sigmoid function to calculate the probability of a valid pair [5]:

p(flag = 1|e,r, M) = o(cT Mr +b) (1)
4.2.2 Multi-layer LSTM

Multi-layer LSTMs have additional hidden layers that capture the learned representations of prior
layers and create new representations at a higher level of abstraction. In the multi-layer model, the
hidden state of the top layer at the end of the sequence generates the context and response encoding
(Figure 6). The the loss function is same as in single-layer LSTM above.

4.2.3 Bi-directional LSTM network

Bi-directional LSTM networks duplicate the first recurrent layer in the network so that there are two
layers side-by-side (Figure 7). These networks have access to the past and future information which



allows the context of the whole utterance to generate the encoding. The encoding is constructed
by concatenating the hidden cell states from the forward pass and the backward pass networks,
respectively, as illustrated in the figure.

Figure 7: Bidirectional LSTM Network. Figure 8: BERT-based dual encoder network.

4.2.4 Loss function

All the three variations of LSTM model are trained by minimizing cross entropy loss for all context
¢; and response 7; pairs in the training dataset:

Loss = — Z lOg(p(flagnlcna Tn, M)) (2)

4.3 Pre-trained BERT Model

BERT is a recent model that was published by Google AI group[6]. BERT is a multi-layer bi-
directional transformer encoder. The Transformer applies a self-attention mechanism which directly
models relationship of all words in a sentence regardless of their respective position. Pre-trained
BERT model can be fine tuned to create state-of-the-art models for a variety of NLP tasks. In our
project, we use a pre-trained BERT model to generate encodings of context ¢ and responses r. We
train the network to only learn the parameters of matrix M and bias b of the last layer as described in
section 4.2.1. We used a pre-trained model with 12 Transformer Blocks and 768 hidden states, with
110M variables.[9]

4.4 Evaluation Metrics

We use the Recall @K metric for evaluating the different models mentioned above. The task is for
the agent to select the k most likely responses, and it is correct if the true response is among the
k candidates. In our case, we measure the Recall@K metric for a set of 10 responses, where one
response is the correct one, and the remaining nine are distractors. Note that during training, we
predict the probability of the example being correct. During evaluation, the goal is to score the
response and the nine distractors and pick the k top ones.

S Experiments
5.1 Hyperparameters

We experimented with several configurations of the models, including single layer (state sizes from
256 to 768), multi-layer LSTMs (2-3 layers - 128 state size), and bidirectional models. We finally
employed the 12-transformer, 768 hidden size BERT pre-trained model as this model has presented
the state-of-the-art results in a wide variety of NLP tasks.

We used GloVe word embedding size of 100. Additionally, we used a maximum sequence length of
160 for the recurrent models and BERT, i.e., the context and responses are truncated to 160 words.
This was chosen based on the results from the paper[5].

We used a learning rate of 0.001, with Adam which gave the best results. The batch size of 64 was
dictated by GPU memory limits (GTX 970). We discovered that after 30-40K epochs, the loss value
minimized, and the highest Recall@K accuracy numbers were achieved.

We also experimented with using GloVe pre-trained embeddings for words in LSTM-based networks,
and ran the same experiment without the GloVe word embeddings.
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Network Type State Size # Layers Bidirectional Pre-Trained Recall@l Recall@2 Recall@5
LSTM 256 1 No No 0.526 0.708 0.923
LSTM 256 1 No Yes 0.519 0.708 0.919
LSTM 768 1 No Yes 0.499 0.683 0.914
LSTM-Multi 128 2 No Yes 0.494 0.689 0.911
LSTM-Multi 128 3 No Yes 0.483 0.675 0.911
LSTM-Bidi 128 1 Yes Yes 0.512 0.696 0.915
LSTM-Bidi 128 1 Yes No 0.537 0.712 0.920
BERT 768 12 Yes Yes 0.551 0.738 0.927

Table 1: Results - Recall@K scores for various network types

5.2 BERT Model

For BERT, we downloaded a pre-trained model with 12 Transformer Blocks and 768 Hidden states
[9], and set up a sentence to embedding service with BERT serving server [10], to translate each of
the context and responses into encodings (€ R7%), as shown in Figure 8. Note that since we are
using pre-trained BERT models, this conversion to encoding needs to be done once for the entire
dataset.

6 Results and Discussion

We have summarized the results of our runs in Table 1. Each of these networks gives a substantially
better accuracy than the TD-IDF baseline values of Recall@5 of 77%, and Recall@1 of 41%, showing
the advantages of recurrent models.

Our initial experiments focused on increasing the size of the LSTM cells, but state size beyond 256
did not result in improved performance. In fact, the performance at state size 768 was worse for all
Recall @K metrics, likely due to overfitting.

Multi-layer LSTM topologies with 2 or even 3 layers did not result in improved performance over
single layer LSTMs. However, we found that bi-directional LSTMs offered better performance than
both single-layer and multi-layer LSTM models. This is likely due to the fact that bidirectional
LSTMs can better capture the semantics of the utterances by evaluating both left and right contexts.

We experimented with the LSTM networks above with and without pre-trained GloVe embeddings
for the words in the context and the responses. We did not find significant performance difference
with the use of pre-trained embeddings.

Our experiments with Bidirectional Encoder Representations from Transformers (BERT) has yielded
the best results. This is possibly because of the bidirectional and attention capabilities of the networks,
with the joint conditioning on both left and right context in all layers. Note that BERT does away
with LSTMs/GRUs completely. With this, the model has to only learn M € R768%768 and b ¢ R768
parameters. The encoding generation for training, validation and test csv dataset files takes over 7
hours. However, with the encoded values as input to the last layer of the network, the training runs
about 20 times faster than the previous models with LSTM.

7 Conclusion/Future Work

Our conclusion is that end-to-end neural network based dialog systems for goal-oriented purpose-
specific domains work well with recurrent network topologies, and we discovered that transfer learning
through BERT yielded the best answers, over multi-layer and bidirectional LSTM architectures. Our
experiments suggest that context is best captured by bidirectional topologies, as shown by the superior
performance of BERT and bidirectional LSTM over uni-directional LSTM topologies, including
multi-layer variations. BERT’s advantage lies in its bidirectional architecture with self-attention
mechanism which models relationship of all words in a sentence irrespective of their position.

In future work, we would like to add knowledge sources related to the goal-oriented task and
additional context information to improve the accuracy of the next utterance selection. We would also
like to extend our models with reinforcement learning to include user feedback such as correction of
response and satisfaction scores.



8 Contributions and Code

Madhulima worked on the Tensorflow LSTM, multi-layer LSTM, bidirectional LSTM and BERT
models. David worked on TF-IDF, RNN and GRU models in Keras. Madhulima and David con-
tributed equally to the final report.

Our code is available at https://github.com/madhulima/dialog-system-project. The readme files
contain instructions to run the code. The base code we worked off was from an implementation of
basic model by Britz [12]. We modified the code to fix obselete TensorFlow dependencies and broken
dataset dependencies. We implemented various LSTM models on top of this base code including
multi-layer LSTM network and bi-directional LSTM network. We implemented code to generate
BERT context and response encodings and integrated the BERT model with the end-to-end dialog
system.
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